

# Foresight Vehicle Technology Roadmap

Technology and Research Directions for Future Road Vehicles

2012

200

2002



No part of this publication may be reproduced, stored in any information retrieval system or transmitted in any form or media without the written prior consent of Foresight Vehicle.

Foresight Vehicle

Tel: 0845 009 3838 Fax: 0845 009 3939

www.foresightvehicle.org.uk

© 2004 Crown Copyright. All rights reserved

2002 - Version 1 2004 - Version 2

ISBN: 0-900685-51-4

Published by Society of Motor Manufacturers and Traders Ltd Forbes House, Halkin Street, London, W1X 7DS, UK Tel: 0207 235 7000, Fax: 0207 9730529



The Society of Motor Manufacturers and Traders Limited Forbes House, Halkin Street, London SW1X 7DS

# **Foresight Vehicle**

The Foresight Vehicle Programme, which started in 1996, has been one of the most successful initiatives for supporting research, design and development projects in the UK automotive industry.

Initiated by the DTI, the programme has been supported by industry and several other government departments. It has a combined total committed spend of approximately £100 million and the programme is launching its 100th project.

SMMT has always been extremely supportive of the programme and is proud to be involved in the vast network it has developed. SMMT was delighted to be asked to take on the task of programme manager in the spring of 2003.

During the early development of the programme, it was decided by the Steering Committee that a Technology Roadmap should be developed to highlight the routes and strategy the projects should take. The highly acclaimed first edition was published in 2001. This document has received recognition in the international automotive sector as well as other industrial sectors.

As with all documents of this nature, there is a need to review and update the strategy on a regular basis. Version 2 has had further input from SMMT's Engineering Committee and we are pleased to endorse its findings.

We would also like to thank all those involved especially, the five Thematic Chairmen and Cambridge University, for their hard work and support.

Christopher Macgowan Chief Executive



Telephone No. +44 (0)20 7235 7000 Fax No. +44 (0)20 7235 7112 Textphone No. +44 (0)20 7235 8378 Web Site www.smmt.co.uk Registered Number 74359 England Registered Office at the above address 'SMMT' and the SMMT logo are registered trademarks of SMMT Limited

# Foresight Vehicle Technology Roadmap Version 2.0

Technology and research directions for future vehicles

#### Contents

|    |                                                                                                                           | Page       |
|----|---------------------------------------------------------------------------------------------------------------------------|------------|
| 1. | EXECUTIVE SUMMARY                                                                                                         | 5          |
| 2. | INTRODUCTION                                                                                                              | 10         |
| 3. | TRENDS AND DRIVERS                                                                                                        | 12         |
| 4. | PERFORMANCE MEASURES AND TARGETS                                                                                          | 19         |
| 5. | TECHNOLOGY 24                                                                                                             |            |
|    | <ul><li>5.1 Engine and Powertrain</li><li>5.2 Hybrid, Electric and Alternatively Fuelled Vehicles</li></ul>               | 26<br>34   |
|    | <ul><li>5.3 Advanced Software, Sensors, Electronics and Telematic</li><li>5.4 Advanced Structures and Materials</li></ul> | s 43<br>50 |
|    | 5.5 Design and Manufacturing Processes                                                                                    | 58         |
|    |                                                                                                                           |            |

| APPENDIX | 65 |
|----------|----|
|          |    |
| NOTES    | 67 |

# **1 EXECUTIVE SUMMARY**

The scope of the Foresight Vehicle technology roadmap is broad, reflecting the complex nature of the road transport system and the changing environment in which it operates. The roadmap represents a 'rich picture', capturing knowledge and thinking from a wide range of perspectives. Version 1.0, published in 2002 and based on data collected in 2001, brought together more than 130 experts from across the automotive sector, representing more than 60 organisations. Market and industry trends and drivers were considered against a 20 year time horizon, together with performance measures and targets for the road transport system and the technologies and associated research that can deliver the required benefits.

This Version (2.0) has reviewed the information contained in the original, and current views and updates on the technology directions and targets are now included. To ensure a genuine review, more than 75% of the people consulted for this exercise had not participated in Version 1.0. Although the information contained in Version 1.0 was found to be still broadly relevant, the UK commitment to the Kyoto Protocol and increasing global concerns about the use of vehicles in terrorist attacks has brought both these issues into focus. Also, although infrastructure performance measures and targets have not been included either in this or Version 1.0 of the roadmap, it is evident from the roadmapping process that bringing them together in a future version needs consideration. This includes both the physical infrastructure as well as the associated systems.

The overall goal of the technology roadmapping initiative has been to support the aims of Foresight Vehicle, providing a framework for ongoing investment in research partnerships, focused on achieving sustainable wealth creation and quality of life. The technology roadmap supports the recommended actions of the UK Automotive Innovation and Growth Team (AIGT), in terms of providing a framework for:

- Encouraging technological innovation in road vehicle systems in the short, medium and long-term. The 20 year horizon provides a 'radar' to ensure that investment in technology and research accounts for the trends and drivers that influence the road transport system in that time frame.
- Enabling communication, discussion and action within industry collaborations, academia and networks.
- Mapping future innovation paths for a number of key technology areas, including:
  - Engine and Powertrain
  - Hybrid, Electric and Alternatively Fuelled Vehicles
  - Advanced Software, Sensors, Electronics and Telematics
  - Advanced Structures and Materials
  - Design and Manufacturing Processes

For this version, the major priorities associated with the trends and drivers have been identified, giving more focus to the technology development needed. However, it is not desirable to overly constrain the research agenda. This is because of the broad scope of the roadmap, the inherent uncertainties associated with the 20 year time frame and the various interests of a diverse set of stakeholders. Rather, the roadmap should be used to provide structure, context and broad direction. This structure enables a consistent language and approach to be developed in terms of understanding the relationships between specific technology areas, system performance and industry drivers.

In this summary, the investment required in road vehicle technology and research has been considered in terms of the contribution that the investment is expected to make towards the priority goals derived from the primary environmental, societal and economic themes during the roadmapping process. These goals are summarised as follows.

| Environment | Global Warming, CO <sub>2</sub> reduction<br>Conservation of resources<br>Health, pollutant reduction<br>Waste, re-use and recycling |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Safety      | Accident prevention<br>Accident effect mitigation                                                                                    |
| Choice      | Vehicle design<br>Vehicle manufacturing                                                                                              |
| Mobility    | Access and use of the system<br>Infrastructure development                                                                           |
| Security    | Vehicle and occupant security<br>Prevention of vehicle use in acts of terrorism                                                      |
| Economics   | Manufacturing cost reduction<br>Flexible manufacture<br>Cost of ownership                                                            |

#### Environment

Global warming Reduce CO<sub>2</sub> and other greenhouse gas emissions associated with road transport. To achieve the UK commitment to the Kyoto protocol, a 12.5% reduction in CO<sub>2</sub> emissions (compared to the 1990 level) is required in the time frame 2008 to 2012. A stretch target of 20% by 2010 has been set by the UK Government, which has declared it will take the lead in Europe. As 22% of CO2 derives from road transport, major development activity is required for vehicle propulsion systems, both conventional IC engines and for hybrid and fuel cell concepts. The European Commission and ACEA have agreed voluntary targets for passenger cars of 140g/km CO<sub>2</sub> new car fleet average in the EU by 2008. Subsequent targets are the subject of current negotiation and the European Commission has expressed a desire to see 120g/km by 2012. In the UK, there are low carbon vehicle targets for 10% of new cars and 20% of new buses by 2012. Whilst concentration has been on-road transport, off-road vehicles (construction, agriculture etc) are now becoming a significant part of total emissions and this sector will see an increase in development needs. For the future, the threatened environmental impact can be avoided by significant reductions in vehicle-miles, (which people may not accept) or by significantly improved g/km of CO2 (which fossil fuel technologies may be unable to deliver).

Conservation of Conserve non-renewable sources of energy, develop alternative energy sources and systems, improve efficiency and waste energy re-use, reduce unnecessary travel and improve distribution systems

The consumption of oil continues to increase. Expansion of national economies has a significant impact on demand, whilst international events have led to some supplies becoming unreliable. New sources of non-oil derived energy are required, which impacts the development of natural gas derived and bio-fuels as well as hydrogen. Improvements to conventional propulsion unit thermodynamic efficiencies will need continuing attention with the development of advanced, fuel efficient, high specific output, downsized engines a key. Advances in lubricants and tribological coatings are needed to reduce friction. Vehicle weight is also a factor in improving overall energy efficiencies. Lightweight materials and structures, whilst retaining or improving safety, are needed to enable gains to be realised.

Health Reduce emissions of substances which can impact health. This is particularly important in urban areas with a high population and vehicle density. These include particulates, NO<sub>x</sub>, benzene, carbon monoxide, hydrocarbons, sulphur dioxide and ozone. Road vehicles contributed 46% of the total NO<sub>x</sub> pollution in 2000 (the largest contributor) and 18% of PM10 (second largest contributor). However, it is thought that smaller particulates are a greater hazard, for which vehicles make a more significant contribution. Particulates and NOx emissions are greater from diesel engines than from gasoline, although capitalising on their CO<sub>2</sub> benefits requires the development of both combustion technologies and exhaust treatment. European directives, Euro 5 and Euro 6 (in the 2010 to 2012 timeframe) will mandate pollutant levels for gasoline and diesel engines, both for passenger car and commercial vehicles. As with CO<sub>2</sub> emissions, general IC engine and vehicle fuel efficiency improvements will help alleviate the situation, as will the introduction of hybrid, fuel cell and alternatively fuelled propulsion technologies. For manufacturing, development is needed for improved energy efficiency and also the reduction of emissions from industrial processes. Waste Re-use, recover and recycle a significant proportion of vehicle materials and structures. This in accordance with the European End-of-Life Vehicle Directive already in

force. It also prohibits the use of certain materials for use in vehicles. Coupled with the targets to improve re-use and recovery to > 95% vehicle weight, and re-use and recycling to > 85% by 2015, it requires significant development of materials and structures. Vehicle design will need to take account of the requirements for disassembly, as well as the environmental management from cradle to grave, including reprocessing techniques. Legislation on electronic equipment (such as WEEE) and substance waste disposal will also act as a constraint on the use of materials (including, for example, lubricants), leading to the development of more environmentally friendly products and systems.

#### Safety

Accident prevention Reduce the number killed and seriously injured by road traffic accidents.

The UK has the second best record for road safety in Europe, after Sweden. However, there are still around 3,500 deaths and 40,000 injuries a year. With vehicle numbers still expected to rise above the current level of 27 million, preventing road accidents and mitigating their effect is mandated by the Government. Compared to the average for the period 1994-1998, a 40% reduction is required in deaths and serious injuries by 2010. For accident prevention, there are significant opportunities to develop and implement vehicle control strategies based on advanced electronics, sensors and telematics using both on-board and infrastructural based systems. This includes pedestrian and vehicle sensing, hazard analysis, adaptive cruise controls and active safety system deployment. Behaviour monitoring and performance alerting through advanced sensors and evaluation algorithms will help reduce potentially dangerous driver error events. Technologies will need to be capable of manageable degradation so as to fail safe, with global standards adopted both for operation and design.

| Accident effect<br>reduction | <i>Reduce the death and injury rate for occupants of vehicles involved in accidents.</i><br>Further advances in vehicle and structural design will impact the mitigation of the effects of accidents, both for vehicle occupants and those external to them. New materials and structures developed for lightweight cost-effective application will need to be compatible with the need for improved safety standards. Improvements to the physical infrastructure, e.g. increased provision and use of motorways (with no pedestrians, small differences in vehicle speeds, no intersections and no on-coming traffic) can also significantly contribute to reducing accidents. |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Choice                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Vehicle design               | <i>Provide greater choice for vehicle purchase and usage.</i><br>Individual choice is leading to the need for a wide variety of tailor made vehicles, with pressure on the manufacturing to deliver made to order solutions in a short time frame with minimal inventory.                                                                                                                                                                                                                                                                                                                                                                                                        |
| Vehicle manufacturing        | <i>Produce more vehicle variants.</i><br>Increasing modularisation technology is needed, as well as the possibility of configuration at the dealer. Vehicles which can be reconfigured, either for fashion or functionality, will need appropriate new design and manufacturing systems.                                                                                                                                                                                                                                                                                                                                                                                         |

# Mobility

| Access and use of             | Improve journey time reliability.                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| the system                    | "Transport 2010. The 10 year plan" requires a modern, safe, high quality network                                                                                                                                                                                                                                                                                                                                                                       |
|                               | better meeting peoples needs. Mobility and avoiding congestion is a key need, requiring improvements to be made through the development and use of advanced Intelligent Transport Systems (ITS) and vehicle flow control. New models for system usage, such as road use charging, avoidance of bottlenecks and limiting access to reduce pollution, likewise will be enabled by the application of ITS and associated control and information systems. |
| Infrastructure<br>development | Provide an infrastructure capable of interfacing with emerging vehicle technologies.                                                                                                                                                                                                                                                                                                                                                                   |
|                               | Infrastructure and vehicle developments need to advance and be deployed at a                                                                                                                                                                                                                                                                                                                                                                           |
|                               | similar rate to be effective, although without focussed road capacity investment,                                                                                                                                                                                                                                                                                                                                                                      |
|                               | ITS of itself will not solve the congestion problem. Performance measures and                                                                                                                                                                                                                                                                                                                                                                          |
|                               | targets for the infrastructure itself have not been included either in this or Version                                                                                                                                                                                                                                                                                                                                                                 |
|                               | 1.0 of the roadmap and bringing them together in a future version needs                                                                                                                                                                                                                                                                                                                                                                                |
|                               | consideration.                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## Security

| Vehicle and occupant | Reduce vehicle related crime.                                                |
|----------------------|------------------------------------------------------------------------------|
| security             | Materials and systems aimed at prevention of access and theft continue to be |
|                      | required. 'Smart' technology must be developed to avoid both key theft and   |
|                      | targeting of individuals being adopted as a means of taking vehicles without |
|                      | consent.                                                                     |

Terrorism

#### Prevent vehicle use in acts of terrorism.

A growing global concern is the use of vehicles in terrorist attacks, brought into focus by events across the world, e.g. for use in suicide bombings, and how this can be prevented.

## **Economics**

| Manufacturing cost<br>reduction | <i>Improve profitability for manufacturers.</i><br>The development of advanced manufacturing methods is required, particularly to take advantage of new materials and structures. Elimination of processes e.g. paint shops, will bring both environmental and economic benefits.                                                                                                                                                                                      |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | <i>Reduce development time and increase value.</i><br>Design systems are required which will significantly reduce development time and raise value. The introduction of more sophisticated virtual engineering tools for all aspects of vehicle design is required, with the ultimate target of "zero prototypes prior to Job 1".                                                                                                                                      |
| Flexible manufacture            | <i>Transfer technologies from/to other industries.</i><br>Opportunities exist for economic advantages associated with the use of technologies from other sectors and use by other sectors. Use of Knowledge Transfer Networks (KTNs) will help facilitate take-up and implementation of such technologies. Advanced concepts will allow the introduction of multi-purpose manufacturing facilities, capable of servicing the needs of more than one industrial sector. |
| Cost of ownership               | <i>Reduce or contain costs of ownership.</i><br>Technologies aimed at increasing effective life, whilst enabling the upgrading of emissions and safety systems, will be needed. Preventative maintenance via on-board diagnostics can reduce operational costs, whilst more durable components, capable of operation in a zero maintenance environment are required.                                                                                                   |

# **2 INTRODUCTION**

Foresight Vehicle, now administered by the Society of Motor Manufacturers and Traders (SMMT), is the UK's prime knowledge transfer network for the automotive industry. It is a collaboration between industry, academia and Government to identify and demonstrate technologies for sustainable road transport.

Future products and technologies must meet social, economic and environmental goals, satisfying market requirements for mobility, safety, performance, cost and desirability, with the objectives of improving the quality of life and wealth creation in the UK. Version 1.0 of the Foresight Vehicle technology roadmap was developed in 2002 to identify the technology and research themes for road transport, aiming to support UK industry in the globally competitive market for transport products and to provide sustainable mobility for UK citizens. The roadmapping process brought together more than 130 experts from across the road transport sector, from more than 60 organisations. The goal was to use the roadmap structure (Fig. 1) to capture and share the rich set of views about how road vehicle markets, products, systems and technologies will (and could) evolve in the next 20 years.

It is 2 years since the publication of Version 1.0 of the roadmap, which was intended to be kept 'alive'on an ongoing basis. This version, (Version 2.0), results from a review of the original and incorporates additional views, updating information where appropriate. Additionally, this version seeks to set priority goals for development, obtained from a top-down approach, leading to the major themes requiring attention. It is intended to be a self-contained document, but reference should be made to Version 1.0 to obtain a more complete picture. The roadmap is not intended to be a detailed review of existing and likely technologies, but rather an indicator of the needs for technology development to which an appropriate response can be made by industry and academia.



Fig. 1 – Foresight Vehicle technology roadmap architecture

The scope of the Foresight Vehicle Technology Roadmap is broad, reflecting the complex nature of the road transport system. The roadmap represents a 'rich picture', capturing the knowledge and thinking from a wide range of perspectives within the automotive sector. Owing to the broad scope of the roadmap, the inherent uncertainties associated with the 20-year time frame and the various interests of a diverse set of stakeholders, it is not desirable to overly constrain the research agenda. Rather, the roadmap is used to provide structure, context and broad direction. This structure enables a consistent language and approach to be developed in terms of understanding the relationships between specific technology areas, system performance and industry drivers. A variety of information is included in the roadmap, including expert opinion, published forecasts, trends and drivers, uncertainties, questions and speculation. It is intended as a resource for thinking about the future, and a framework for supporting collaboration, decision making and action within the road transport sector.

Investment in road vehicle technology and research should be considered in terms of the contribution (impact) that the investment is expected to make towards the primary social, economic and environmental goals:

- *Socially* sustainable road transport system, providing equitable, safe and secure road transport that meets the needs and aspirations of UK society.
- *Economically* sustainable road transport system, supported by a dynamic and successful UK automotive industry.
- *Environmentally* sustainable road transport system, with a low environmental impact in terms of energy consumption, global warming, waste and health.

Foresight Vehicle is currently organised primarily around five technology areas. Each of these has significant potential to deliver high impact technology solutions to meet the above social, economic and environmental goals:

- *Engine and Powertrain* technology development, leading to improved thermal and mechanical efficiency, performance, drivability, reliability, durability and speed-to-market, together with reduced emissions and cost.
- *Hybrid, Electric and Alternatively Fuelled Vehicle* technology development, leading to new fuel and power systems, such as hydrogen, fuel cells and batteries, which satisfy future social, economic and environmental goals.
- Advanced *Software, Sensors, Electronics and Telematics* technology development, leading to improved vehicle performance, safety, control, adaptability, intelligence, mobility and security.
- Advanced Structures and Materials technology development, leading to improved safety, performance and product flexibility, together with reduced cost and environmental impact.
- *Design and Manufacturing Process* technology development, leading to improved industrial performance, considering the full vehicle life cycle from 'cradle to grave'.

This version of the roadmap builds on Version 1.0, updating information and including current views on themes and priorities. The roadmapping process followed the principles described in Version 1.0, but acting to review the original rather than re-create it. The Society of Motor Manufacturers and Traders, acting as representatives of vehicle and component manufacturers, provided definitions of the market and business needs. Thematic group and stakeholder workshops have provided the specialist input to address these, supplemented by questionnaires. In all, more than 75% of the input came from people who had not been involved in the generation of Version 1.0.

# **3 TRENDS AND DRIVERS**

The aim of the Foresight Vehicle Technology Roadmap is to relate technology and research requirements to the trends and drivers that define the future needs of road transport in the UK, in the context of the broader integrated system of which it is a part. Six broad themes have been used to structure the information contained in the roadmap, which is focused on the development of a sustainable road transport system, as shown in Figure 2.



Fig. 2 – Trends and drivers that influence road transport system

- 1. *Social* trends and drivers relate to the social systems we live in, including demographics, life style aspirations and choices, mobility requirements and behaviour, working patterns and desires for health, safety and security.
- 2. *Economic* trends and drivers relate to the financial systems that affect our lives, including global, national, corporate and personal economic considerations.
- 3. *Environmental* trends and drivers relate to the physical environment in which we live, including energy production and consumption, waste, emissions and pollution, and the associated health impacts.
- 4. *Technological* trends and drivers relate to how technology affects the way we live, including development of new fuel and power systems, electronics and control technologies, structures and materials, together with manufacturing and business processes.
- 5. *Political* trends and drivers relate to the systems that govern us, including policy, regulation and legislation, together with the political processes that lead to them.
- 6. *Infrastructural* trends and drivers relate to the systems that support road transport, including the physical roads and infrastructure, together with provision of associated services and information, and the interfaces with other modes of transport.

These six themes are not independent, and there are many complex interdependencies between them. For example, the related issues of vehicle fuel efficiency and CO<sub>2</sub> emissions have significant implications for society, economics, the environment, technology, politics and infrastructure.

The trends and drivers identified in Version 1.0 of the roadmap have been reviewed for Version 2.0 and have not changed significantly since it was published. A tabular format, Table 1, has been adopted here to show the summarised trends and drivers brought forward from Version 1.0 for completeness, including new items identified in the current review.

|                | Trends and drivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Queries                                                                                                                                                                                                                               | Vision                                                                                    |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Society        | Growing demand for mobility<br>Congestion and pressure on infrastructure<br>Changing working and living patterns<br>Ageing population<br>Longer working life<br>Increased mobile and home working<br>More single person households<br>Continued growth of cities and towns<br>Consumer demand for greater variety, quality and performance of<br>products and services<br>Increasing concern for health, safety and security<br>Increasing concerns about terrorism<br>Demographic shift in vehicle type and ownership patterns | Social attitudes towards<br>transport and the environment<br>Continued growth of South<br>East<br>Social attitudes to vehicle<br>monitoring                                                                                           | Cheap, safe, convenient,<br>comfortable, clean,<br>secure and equitable road<br>transport |
| Economy        | Growth in economy and consumption<br>More trade and transport of goods<br>Congestion and pressure on infrastructure<br>£65bn of public and £56bn of private investment needed by 2010<br>Energy costs rise 2-3% per year<br>Stability of oil supplies<br>UK productivity lags competitors<br>Opportunities for high value products and services<br>and financial markets stimulate increasingly networked global economy<br>Increasing gap between wealthy and poor                                                             | Fiscal and monetary policy<br>Impact of evolving European<br>Union<br>Public vs. private finance<br>Will current trend continue<br>New entrant vehicle makers<br>Impact of environment and<br>social opinion on economy and<br>policy | Successful and<br>sustainable road transport<br>industry                                  |
| Environment    | Increasing global population and associated economic development<br>Increasing energy consumption and greenhouse gases<br>Increasing burden of transport on environment<br>Reducing emissions as engines become more efficient and cleaner<br>Pressure to utilise material and energy more efficiently<br>Opportunities for alternative energy sources and power systems<br>Opportunities for improved materials and processing technology                                                                                      | Impact of global warming, is it<br>due to CO <sub>2</sub> is the response<br>adequate?<br>How long will oil and gas<br>supplies last<br>Social attitudes to environment<br>and impact on business and<br>government policy            | Environmentally<br>sustainable road transport<br>system                                   |
| Technology     | Opportunities for innovations in fuel, engine and power systems<br>Increasing performance of information and communications technology<br>(speed, cost, size, functionality)<br>Opportunities for innovations in sensors, electronics, communications and<br>control systems (vehicle and infrastructure)<br>Opportunities for innovations in materials (weight, strength, processing,<br>intelligence<br>Opportunities for high value design, manufacturing and engineering<br>services                                        | How far can the internal<br>combustion engine go<br>Which energy/power solutions<br>will succeed in the long term<br>Moore's law continues<br>Need for international<br>standards<br>Disruptive technologies                          | Effective and appropriate<br>technological innovation<br>for road transport               |
| Policy         | Government initiatives, including ten year transport plan<br>UK, European, National and Industrial policy, standards and legislation<br>CO <sub>2</sub> , energy, emissions, recycling and carbon legislation<br>Role of UK in evolving and enlarging European Union<br>Social expectations for public services, transport system, environment,<br>housing, etc                                                                                                                                                                 | Streamlined planning process<br>Harmonisation of policy,<br>standards and legislation<br>Impact of geopolitical trends<br>and disruptions                                                                                             | Effective, integrated,<br>consistent and sustainable<br>road transport policy             |
| Infrastructure | Increasing demand on transport system (passenger and freight)<br>Large investment required to maintain and develop road and other<br>transport infrastructure<br>Development of physical road and transport infrastructure<br>Development of information and communications infrastructure<br>Development of alternative energy distribution infrastructure                                                                                                                                                                     | Development and<br>harmonisation of standards<br>Role of public and private<br>sectors<br>Privatisation of high<br>maintenance cost roads<br>Impact of social, political and<br>technology developments                               | Effective, integrated and<br>sustainable road transport<br>system                         |

*Table 1 – Market trends and drivers* 

## Social Trends and Drivers

| Vision                         | Cheap, safe, convenient, comfortable, clean, secure and equitable road transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mobility and<br>congestion     | There is a growing demand for mobility (passengers and goods), stimulated by economic growth and development, together with changes in lifestyles and working patterns. The road transport system plays a central role (80% of journeys are by car). Projected growth in GDP will have an attendant growth in traffic to sustain it. The 10 year plan predicted GDP growth rates of around 3% per year to 2010. Associated road traffic growth was predicted to increase by 20% in the 10 year period. As well as the developments in vehicles and their systems, there is a need for investment in road, rail and air infrastructure and technology if current congestion trends are to be countered and economic development assured. |
| Lifestyle and attitudes        | The road transport system must satisfy the needs of many parts of society, including drivers, pedestrians, children, parents, employees and emergency services. The role of business and government is to satisfy the needs and aspirations of these groups, economically and with minimal impact on the environment. Living and working patterns are expected to change, with increasing mobile and home working enabled by improved information and communications. Less tolerant attitudes towards "bad" driving will influence the take-up of counter measures.                                                                                                                                                                     |
| Demographics                   | There is a need to anticipate and provide for demographic changes, such as an ageing population and growth of industrial and urban areas. The demand for housing is increasing, particularly in the South East, with 20% more houses required by 2020. Approximately a quarter of the population will be of retirement age by 2030. However, working life extension is anticipated because of pension issues which will impact on economic activity. Global population growth, combined with economic development, provides commercial opportunities whilst posing a threat to the environment.                                                                                                                                         |
| Health, safety and<br>security | There are about 3,500 road traffic deaths and 40,000 serious injuries in the UK each year, with a significant social and economic impact (estimated to be 2% of GDP for Europe as a whole). This, combined with the high level of vehicle crime in the UK, has resulted in government and industry efforts to improve passenger and pedestrian safety and security. Increasing concerns about terrorism might influence attitudes towards vehicle and occupant monitoring. Social demand for improved health will encourage continuing efforts to reduce emissions and particulates.                                                                                                                                                    |

## **Economic Trends and Drivers**

| Vision             | Successful and sustainable road transport industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| National economics | The transport/automotive sector represent a significant proportion of GDP (transport is estimated to represent 10% of European GDP, with automotive accounting for 5.3% of UK GDP, employing 700,000 and responsible for £20bn annual exports). The annual cost of owning and running vehicles in the UK is £5bn, with an additional investment of £2bn in road construction and £0.5bn in vehicle research and development. In addition, congestion is estimated to cost the UK economy between £15-20bn each year. Significant investment in infrastructure is required over the next 10 years (Government 10-year plan includes funding levels |

of £65bn from public and £56bn from private sources). Government has a difficult task to achieve in providing sufficient infrastructure to achieve its GDP objectives and in optimising the use of that infrastructure. Taxation of road usage, offset by other tax reductions, is likely to play an increasing part in efforts to tackle congestion and environmental problems. Freight Up to 80% of domestic freight is carried by road, although estimates are lower for Europe as a whole (44%). Increasing global production and trade mean that the demand for freight carried by road, air and sea could double in the next 10 years. The UK has a vehicle manufacturing capacity of more than 1 million vehicles, with **Business** an engine manufacturing capacity of around 4 million units. Globalisation and consolidation trends continue, stimulated by financial markets and improvements in information and communications technology. The competitive pressure on volume and labour intensive manufacture will continue, with an increasing focus on services and high-value engineering. Success in global markets will require continual improvement to productivity and product development times for new vehicles, together with the development of new and innovative high value technologies and products. Consumer Global population growth, combined with economic development, will provide both commercial opportunities and pressure on political systems and the environment. Increasing affluence, combined with new living and working patterns, will result in demand for improved variety, performance and quality of goods and services. Social disruption caused by an increasing wealth gap may have economic implications.

#### **Environmental Trends and Drivers**

| Vision               | Environmentally sustainable road transport system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental burden | Increasing road, rail, sea and air transport results in a greater burden on the environment, in terms of greenhouse gas and other emissions, industrial and consumer waste, and depletion of oil and other reserves. Road traffic in the UK is predicted to grow by 19% by 2008, and by 50-160% over the next 20-30 years.                                                                                                                                                                                                             |
| Global warming       | Transport is responsible for around 22% of UK greenhouse gas emissions, which may increase by 25-50% over the next 10-20 years based on current trends, although government policy aims for a 20% reduction in CO <sub>2</sub> emissions by 2010. The global warming that may be associated with greenhouse gas emissions could result in an average global temperature rise of between 1.5 and 4.5°C by 2050, which would have significant effect on quality of life and economic activity.                                           |
| Pollution            | Clean air is an essential ingredient of good quality of life, with implications for people's health, particularly respiratory diseases. Continuing legislation, technological developments and progressive replacement of the vehicle fleet by more modern vehicles will reduce vehicle emissions to less than 20% of their 1990 level by 2010, although increasing transport demand and congestion will have a counter effect. Longevity of vehicles inhibits the quick take-up of newer, more environmentally friendly technologies. |

| Energy | Fossil fuels supply 98% of transport energy demand, with world oil demand growing at between 1.1 and 2.7% annually. Estimates vary, but it is predicted that conventional oil supply may peak sometime in the next 15 years or so, after which demand will outstrip supply. In addition, there are uncertainties about the unstable production situation in some producing countries due to international events. The environmental and commercial pressure for alternative energy systems will increase, leading to a number of competing alternatives (for example, bio-fuels, electric motors and batteries, hybrids, hydrogen internal combustion engines and hydrogen fuel cells). |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waste  | End-of-life vehicles account for 1.8 million tonnes of waste in the UK each year. The rising cost of landfill, together with European legislation on recycling and waste disposal will have a positive impact on vehicle design, manufacturing, financing, maintenance and dismantling.                                                                                                                                                                                                                                                                                                                                                                                                 |

| Vision                               | Effective and appropriate technological innovation for road transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Energy and power                     | Currently road transport is heavily dependent on oil as a primary fuel source.<br>However, within a 20 year time horizon the natural reserves of conventional oil may<br>not be able to keep up with the estimated increase in demand. Activities are<br>concentrating on reducing fuel consumption of conventional vehicles, together with<br>developing alternative energy and power systems, such as hybrids, electric and<br>alternatively fuelled vehicles. Hydrogen and fuel cells are of particular importance,<br>although it is likely to be 15-20 years before such systems become widely available.<br>The large investment in fuel distribution infrastructure required is a significant<br>barrier to widespread adoption for many alternative fuel solutions. Nevertheless,<br>small scale use of hydrogen as a vehicle fuel can be expected to progressively<br>increase. |
| Electronics and control              | The performance of electronics and communications technology is rapidly advancing, in terms of processing speed, miniaturisation, cost and functionality, driven by Moore's law (and the International Semiconductor Industry Roadmap). The content of electronics and software in new vehicles will continue to increase, in areas such as control and intelligence, telematics, information and service provision, entertainment and user interfaces. Many of these functions will require parallel development of the infrastructure to enable communications and system-level control. The development and agreement of international standards is a key enabler.                                                                                                                                                                                                                    |
| Advanced structures<br>and materials | Developments in materials technology can provide a number of economic and<br>environmental benefits, in terms of reduced weight and material consumption,<br>increased strength, reduced energy consumption and increased vehicle<br>performance. New materials technologies of interest include lightweight alloys and<br>polymers, fluids, coatings, biotechnology and nanotechnology.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

## **Technological Trends and Drivers**

*Processes and systems* Effective manufacturing and management processes and systems are a key competitive factor in the automotive sector, in terms of both efficiency and effectiveness. Of particular importance are processes associated with research, design, new product development, manufacturing and service provision. Newer flexible, manufacturing technologies have the opportunity to service different industry sectors and provide better returns on investment. The UK has particular strengths in design and value-added engineering services, although significant shortages in skilled engineers, scientists and technologists are predicted.

#### **Political Trends and Drivers**

Vision Effective, integrated, consistent and sustainable road transport policy Transport Significant government effort is directed towards transport, stimulated by the economic and social impact of worsening congestion. The UK ten-year transport plan anticipates £64.7bn public and £56.3bn private investment in urban and regional transport infrastructure by 2010. Targets have been set for reductions in congestion; road widening of 380 miles of the strategic road network; 80 trunk road schemes; 100 new bypasses; 130 major road improvement schemes; noise reduction; maintenance of roads, bridges and lighting; improved information, booking and ticketing systems; 40% reduction in deaths/serious injuries; accelerated take-up of cleaner vehicles. Bus, tram and light railway solutions are planned for urban and regional development. Energy and CO2 The need to use energy efficiently and reduce pollution, greenhouse gases and waste is reflected in international agreements, European legislation and UK policy. Clear targets are specified for improved fuel efficiency and the total level of CO<sub>2</sub> and other greenhouse gases produced as a by-product. Waste End-of-life vehicles account for 1% of Europe's waste, with the UK producing 1.8 million tonnes each year. Reduced availability of landfill sites, together with taxation and European End-of-Life legislation may eventually lead to new forms of vehicle design, manufacture and ownership. By 2015 it is expected that 95% of vehicles will be recyclable, with only 5% destined for landfill (currently vehicles have one of the highest recycling rates - more than 75%). Health and safety The desire to reduce road deaths and serious injuries is emphasised in the UK tenyear transport plan. Targets of 40% reductions in deaths and serious injuries, and 50% fewer children killed or seriously injured have been set for 2010. This needs improvements to infrastructure and vehicles, required by UK, European and Industry agreements and standards and regulations. In addition there are European and UK targets for reductions in emissions, particulates and pollutants. UK and European political systems and processes underpin the delivery of an Political system efficient and effective road transport system, which requires a partnership between the private and public sectors. The long-term capital investment associated with infrastructure requires stable and integrated policies, while environmental targets require a willingness to develop and abide by international agreements. Issues of particular importance in Europe include the liberalisation of markets (for example, freight by 2008) and harmonisation of legislation and standards.

## Infrastructural Trends and Drivers

| Vision                                              | Effective, integrated and sustainable road transport system                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical road<br>infrastructure                     | Significant efforts are needed to ensure that the physical road transport infrastructure is maintained in good condition, and extended to accommodate future demand (which may double by 2020). The UK ten-year plan includes substantial improvements to the urban and regional road transport infrastructure. New road surfaces are being developed to reduce noise and wear, with the long-term possibility of installing equipment to support road trains (vehicle platooning).                                            |
| Information and<br>communications<br>infrastructure | Rapid improvements in communications bandwidth and computer processing<br>power provide opportunities to improve the overall road transport system<br>performance, in terms of traffic management, reduced congestion, information<br>services, improved safety and security. The development of appropriate technical<br>standards for use in the global market is important, particularly when combined<br>with new vehicle developments. The development of vehicle and infrastructure<br>systems needs to be co-ordinated. |
| Energy infrastructure                               | If alternative energy and power systems are to be developed and deployed widely<br>in vehicles, then appropriate fuel distribution networks will need to be established.<br>It is probable that a number of competing energy and power systems will be<br>developed, starting with LPG and battery/hybrid powered vehicles. However it is<br>likely to be at least 15 years or more before alternative energy sources such as<br>hydrogen and bio-fuels will be widely available.                                              |
| Integrated transport<br>system                      | The effectiveness of the overall transport system demands that the links between the road and other transport modes be considered. Inter-modal transport requires synchronisation of timetables, integrated ticketing systems, together with accurate and up-to-date information services for both passenger and freight.                                                                                                                                                                                                      |

# **4 PERFORMANCE MEASURES AND TARGETS**

The performance of the road transport system needs to improve if the desired social, economic and environmental goals are to be achieved, enabled by technology, policies and infrastructure. Foresight Vehicle is primarily concerned with supporting the development of innovative and appropriate technologies that will lead to improvements in performance of the road transport system. The relationship between technology developments, system performance and trends and drivers is a fundamental aspect of the technology roadmap architecture (Figure 1).

The performance measures and targets have been themed in a similar way to the trends and drivers:

- 1. *Social* performance measures and targets relate to mobility and congestion, lifestyle and attitudes, together with health, safety and security.
- 2. *Economic* performance measures and targets relate to both business and consumer perspectives.
- 3. *Environmental* performance measures and targets relate to the overall environmental burden of road transport, global warming, pollution, energy and material waste.
- 4. *Technological* performance measures and targets relate to energy and power, electronics and control, materials and structures, together with the processes and systems that support development of these technologies. This theme is different from the others, in that it directly relates to the five technology areas considered in detail in Section 5.
- 5. *Political* performance measures and targets relate directly to Governmental policy, regulation, legislation and action in the areas of energy and CO<sub>2</sub>, transport, health and safety, and waste management.
- 6. *System* performance measures and targets relate to the road transport system as a whole, which includes consideration of the infrastructure and the level of system integration. It should be noted that performance measures and targets for the infrastructure itself are not included in this roadmap, as the focus in on road vehicles, although infrastructure developments need to advance in parallel with vehicle technologies for effective deployment.

The technology roadmap builds on previous Foresight Vehicle activity. The Foresight Vehicle Strategic Plan defined a set of nine visionary 'Beacons' that represent integrated aspects of the future system, encompassing technology, product and market concepts, and these are described in detail in Version 1.0. These Beacons are related to road transport system performance measures and targets as defined in the Strategic Plan.

Figure 5 in Version 1.0 shows the summarised performance measures and targets. These have been reviewed in this update and a tabular format used for presentation, table 2. Additions have been made, but no information has been eliminated from that contained in Version 1.0. Blue text has been used to identify those topics considered most important by the Engineering Committee of the Society of Motor Manufacturers and Traders, acting as representatives of the vehicle manufacturers and component suppliers. Specific issues highlighted in review are included in the text.

| Issues        | How to measure?<br>What are reasons for<br>dissatisfaction? | Avoid moving crime focus from<br>the vehicle to the individual.                                                                    | Maintain noise characteristics over<br>vehicle life.                                                                                                  | Rapid development of low cost<br>systems.<br>Perceived value of environment,<br>safety technologies.<br>Freedom of customer choice. |                                                                                                                                           |                                                                                                                                                                                         | Safety and environmental impact<br>higher priority than vehicle cost. | Long vehicle life mitigates against<br>rapid take-up of new technology.<br>Modular incremental development<br>capability? |
|---------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|               | How to<br>What an<br>dissatis!                              | Avoid n<br>the vehi                                                                                                                | Maintain nc<br>vehicle life.                                                                                                                          | Rapid de<br>systems.<br>Perceive<br>safety te<br>Freedom                                                                            |                                                                                                                                           |                                                                                                                                                                                         | Safety a<br>higher J                                                  | Long vehic<br>rapid take-<br>Modular in<br>capability?                                                                    |
| 10 – 20 years | 85% user satisfaction with all transport modes.             |                                                                                                                                    | Road traffic reduction of 6 dBA<br>from 1998 levels. Homologated<br>noise reduction of 4dBA and<br>8dBA respectively for light and<br>heavy vehicles. |                                                                                                                                     | 50% reduction in new vehicle development cost cf. 2000.                                                                                   |                                                                                                                                                                                         |                                                                       |                                                                                                                           |
| 5 – 10 years  | 80% user satisfaction with all transport modes.             | Resistance to attack.<br>Door locks, storage area, alarm systems 5<br>minutes. Immobilisers 20 minutes.<br>Window glass 2 minutes. | Road traffic reduction of 4 dBA from<br>1998 levels.                                                                                                  | Top of range technologies in entry level vehicles e.g. collision avoidance.                                                         | 18 months for completely new.<br>12 months for significant carry-over.<br>35% reduction in new vehicle<br>development cost cf. 2000.      | Manufacturing:<br>30% increase in ROI<br>Order to delivery of bespoke vehicle 3<br>days, significant quality improvement.<br>Need for low investment vehicle<br>programmes 10 – 50 kpa. |                                                                       |                                                                                                                           |
| 0-5 years     | 70% user satisfaction with all transport modes.             |                                                                                                                                    | Road traffic reduction of 3 dBA from<br>1998 levels.                                                                                                  |                                                                                                                                     | 24 months for completely new.<br>18 months for significant carry-over.<br>Significant reduction in number of late<br>engineering changes. |                                                                                                                                                                                         | Goods vehicle: 7 year/2Mkm life.<br>7 hrs/y maintenance.              | 15 year/240 k km vehicle lifetime with emissions compliance.                                                              |
|               | User satisfaction                                           | Vehicle Security                                                                                                                   | Noise                                                                                                                                                 | Customer<br>Expectation                                                                                                             | Development<br>time/cost                                                                                                                  |                                                                                                                                                                                         | Vehicle Cost                                                          | Cost of travel                                                                                                            |
|               |                                                             | /                                                                                                                                  | Jociet <i>i</i>                                                                                                                                       |                                                                                                                                     |                                                                                                                                           | ςουοωλ                                                                                                                                                                                  | 3                                                                     |                                                                                                                           |

Table 2.1 Performance Measures and Targets

Topics considered most important by the SMMT Engineering Committee

| 10 – 20 years Issues | 90 g/km? With freedom of customer choice, performance, etc. | Particulates from all engine typesEuro 5 and Euro 6 are proposals,<br>reduced to 20% of 1998 gasoline2010 to 2012 timeframe. | CO, HC, NO <sub>2</sub> reduced to 50% of EURO 4 standard for all engine types.                                                       | Without incurring significant cost increases.     | Kyoto protocol. Targets needed<br>for commercial vehicles.          | AE Auto Oil Directive reducing<br>NOx, CO, NNfVOC and benzene<br>to $< 20\%$ 1990 levels, PM10<br>< 42% | reduction in deaths and serious Development of infrastructure, not<br>just vehicles. Product liability<br>might restrain development. | Constraint on any material development.                    | 25% improvement on 1998. Requires system and vehicle technology development to be in-step. Road user charging. | se in traffic                                                             | congestion. technology development to be<br>in-step. Congestion charging | y 30%.                               |
|----------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|
| 5-10 years           | 120 g/km?                                                   | Euro 5 light vehicle, 2.5 mg/km<br>Euro 6 heavy duty 3.0 mg/kWh European<br>transient cycle.                                 | Euro 5 light vehicle, e.g. NO <sup>a</sup> 0.08 g/km<br>Euro 6 heavy duty e.g. NO <sup>a</sup><br>0.5 g/kWh European transient cycle. | All companies ISO 14001.                          | Proposed 120 g/km new car fleet average<br>in EU for CO2 emissions. | n3 mean, SO2 47ppb mean, O3 50ppb.                                                                      | UK targets to reduce road accidents: 40% reduction in deaths and serious injuries.                                                    | 2015: ELV targets 95% re-use and recovery. $5\%$ landfill. |                                                                                                                |                                                                           |                                                                          | Improves by 40%.                     |
| 0-5 years            | 2008: 140 $g/km$ new car fleet average in EU.               | Euro 4<br>Continuing reduction.                                                                                              | Euro 4<br>Continuing reduction.                                                                                                       | Achievement of manufacturing legislative targets. | 2008: 140 g/km new car fleet average in EU for CO2 emissions.       | EU targets:<br>Pb 0.25 mg/m3 particulates (PM10) 40 mg/m3 mean, SO2 47ppb mean, O3 50ppb.               |                                                                                                                                       | 2006: ELV targets 85% re-use and recovery, 15% landfill.   | 15% improvement on 1998.                                                                                       | Reduce growth rate in UK traffic to $50\%$ of projected level of $19\%$ . |                                                                          | Improves by $25\%$ compared to 1998. |
|                      | CO2                                                         | Particulates                                                                                                                 | Other gaseous                                                                                                                         | Manufacturing                                     | Climate change                                                      | Pollutants                                                                                              | Safety                                                                                                                                | Reuse/recycling                                            | Accessibility                                                                                                  | Congestion                                                                |                                                                          | Availability                         |
|                      |                                                             | u                                                                                                                            | norivn                                                                                                                                |                                                   |                                                                     |                                                                                                         |                                                                                                                                       |                                                            |                                                                                                                | <br>mətem                                                                 |                                                                          | Reliability                          |

Table 2.2 Performance Measures and Targets

Topics considered most important by the SMMT Engineering Committee

| ! Targets |
|-----------|
| and       |
| Measures  |
| formance  |
| er        |
| ď,        |
| ŝ         |
| $\sim$    |
| Table     |

| Issues      | Improved efficiency and emissions reduction.                                                                                                                   | Alternative fuel availability.<br>Capacity to generate bio fuels.                                                                                                                             | Infrastructure and vehicle system<br>developments linked.<br>Reduction of accidents is key.                                                         | Priority to achieve simultaneous<br>emissions, economy and safety.<br>Re-use/recycling a constraint on<br>development. | Hexible manufacturing capable of<br>servicing different industrial<br>sectors.<br>Simulation of reliability and<br>durability.                                                                         |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10-20 years | ality and speed to market, and to                                                                                                                              | l engine systems and new                                                                                                                                                                      | ility, intelligence, driver support                                                                                                                 | ironmental burden of vehicle, in                                                                                       | fecycle from design to end-of-life,                                                                                                                                                                    |
| 5-10 years  | rformance and drivability, reliability, durab                                                                                                                  | ystems, including evolution of conventional<br>f infrastructure and fuel.                                                                                                                     | ol, safety, adaptability, functionality, reliabi                                                                                                    | flexibility and value, and to reduce costs and environmental burden of vehicle, in<br>se and recycling.                | lustry sector, considering the full vehicle lif<br>s, and systems integration.                                                                                                                         |
| 0-5 years   | Improve thermal and mechanical efficiency, performance and drivability, reliability, durability and speed to market, and to reduce emissions, weight and size. | Develop viable alternative energy and power systems, including evolution of conventional engine systems and new<br>alternative solutions, including consideration of infrastructure and fuel. | Improve vehicle performance in terms of control, safety, adaptability, functionality, reliability, intelligence, driver support<br>and integration. | Improve safety, product configurability, flexibility and viterms of vehicle weight, durability, re-use and recycling.  | Improve the performance of the automotive industry sector, considering the full vehicle lifecycle from design to end-of-life, including manufacturing and business processes, and systems integration. |
|             | Engine and I<br>Powertrain n                                                                                                                                   | Hybrid, Electric I<br>and Alternatively a<br>Fuelled Vehicles                                                                                                                                 | Advanced I<br>Sensors, Software a<br>and Telematics                                                                                                 | Advanced I<br>Structures and to<br>Materials                                                                           | Design and<br>Manufacturing ii<br>Processes                                                                                                                                                            |
|             |                                                                                                                                                                |                                                                                                                                                                                               | οιοάλ                                                                                                                                               | uqɔə⊥                                                                                                                  |                                                                                                                                                                                                        |

Topics considered most important by the SMMT Engineering Committee

Note that the technology theme is different to the others, in that it related directly to the five technology areas considered in detail in Section 5.

Specific comments on the performance measures and target themes are given below.

### Society

*Vehicle security.* A challenge is to improve security without moving the focus of crime from the vehicle to the individual.

User satisfaction. Measurement systems are required which will allow trending an forecasting.

*Customer expectation.* Best available technologies need to migrate from "top of the range" to entry level vehicles, quickly and at low cost. This impacts rapid cost reduction of sophisticated systems such as collision avoidance and passive protection.

## Economic

*Manufacturing*. Improvement of return on investment combined with a reduction of bespoke vehicle lead time from order to delivery of 3 days and with quality improvement is a priority. This has to be obtained against a background of containing end-customer price increases. Vehicle programmes for up to 50,000 vehicles a year are needed which have low investment needs, with the possibility of fully flexible manufacturing systems.

*Vehicle Replacement.* Vehicle longevity precludes the economic rapid take-up of new technologies which will have significant impact on emissions and safety. Retro-fit capability of technology is a challenge as an intermediate step before introducing more radical solutions.

*Operating Costs.* Within the constraints set by customer desires for cheap transport, this is not seen as having such a high priority as emissions and safety. However, although vehicles exist today with emissions performance at 2010 target levels, these are generally unattractive due to cost or performance or both.

#### Environment

*Policy.* Achievement of stretch targets above those set by policy for the reduction of emissions of greenhouse gasses, noxious substances and particulates is seen as a major challenge for the industry.

*Legislation*. European Directives for emissions coupled with voluntary targets for CO<sub>2</sub> reduction are setting the short term agenda.

*Manufacturing*. Compliance with legislation (e.g. emissions and waste regulations) without adding unduly to design and manufacturing costs is a priority.

#### System

*Infrastructure Development.* Although infrastructure performance measures and targets are not part of this roadmap, it is recognised that both vehicle and infrastructure technology development and implementation need to be carried out in parallel.

## Technology

*Priorities.* These are seen as being technologies for emissions reduction, accident reduction (and the effects of accidents) and mobility, whilst providing freedom of choice for the consumers and customers of the vehicle sector.

# **5 TECHNOLOGY**

Technology provides the principle means by which the required improvements to the road transport system will be achieved. The broad definition of technology as 'know-how'has been adopted, which emphasises that it concerns the application of knowledge. This includes 'hard' technology, which is based on science and engineering principles, as well as 'soft' technology, which includes the processes and organisation required to exploit science and engineering know-how effectively.

This section includes a summary of the review of Version 1.0 of the Technology Roadmap as undertaken by the thematic groups.

- 1. Engine and Powertrain (EPT)
  - Thermal and mechanical efficiency
  - Performance and drivability
  - Emissions (pollution and noise)
  - Reliability and durability
  - Speed to market and cost
  - Weight and size
  - Safety
- 2. Hybrid, Electric and Alternatively Fuelled Vehicles (HEAFV)
  - Fuel cells
  - Hybrid engines
  - Advanced internal combustion engines
  - Electrics and electronics for energy and drive systems
  - Conventional and alternative fuels
  - System integration and vehicle infrastructure
  - Design and manufacture
- 3. Advanced Software, Sensors, Electronics and Telematics (ASSET)
  - Shift to software
  - Access and use of vehicles
  - Architecture and reliability
  - Human vehicle interaction
  - Information management
- 4. Advanced Structures and Materials (FASMAT)
  - Safety
  - Product configurability/flexibility
  - Economics
  - Environment
  - Manufacturing systems

- 5. Design and manufacturing processes (DMaP)
  - Lifecycle
  - Manufacturing
  - Integration

Technology introduction has been considered against 3 timescales:

#### 0 to 5 years.

Existing technologies where significant barriers exist to commercialisation, such as standards or system integration, cost etc. Efforts should focus on the development of technology demonstrators.

#### 5 to 10 years.

Significant improvements to current and emerging technologies. Efforts should focus on developing embryonic technologies to a point where they can feed into demonstrators.

#### 10 to 20 years.

Current technologies are not suitable and new solutions are required. Efforts should focus on a new concept development to achieve long term goals, encouraging radical, innovative technologies for evaluation.

## 5.1 Engine and Powertrain

#### Scope

The Engine and Powertrain (EPT) technology theme includes the following vehicle functions and systems:

- On-vehicle fuel filling systems and fuel types.
- Conversion of energy in fuel to useful mechanical power.
- Transmission of power to wheel hub.
- Associated and auxiliary systems such as air flows, after treatment, lubrication systems, generators, alternators and climate control.

Market and industry trends and drivers that are particularly relevant to this technology theme include:

| Social        | Users are demanding greater vehicle adaptability (configurability, upgradeability<br>and modularity) and vehicle performance (to meet different consumer needs and<br>driving styles), and reduced vehicle noise. There is a need for less polluting<br>vehicles with today's level of performance or better, without undue cost inflation.<br>Urban pollution will also act as a driver for the introduction of quieter and less<br>polluting vehicles of all types, car and commercial. Fashion is also dictating the<br>purchase of some private vehicle types, e.g. the current popularity of SUV's. Safety<br>of vehicles is a concern, with control technologies needed for engines and<br>powertrains aimed at accident avoidance and mitigating their effects.                                                                                                                                                                                                                                                                                                            |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Economic      | Competitive pressures exist to reduce development and manufacturing cycle times<br>and costs, and to improve responsiveness, agility, flexibility, durability, efficiency<br>and quality, in order to achieve greater profitability and return on capital. For users,<br>capital and operational costs are important for all vehicle types, private and<br>commercial, leading to improvement needs in engine and transmission efficiencies<br>and with reduced maintenance requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Environmental | Global warming is now widely accepted as a fact and the safe assumption is that the results will be unpleasant and undesirable. Substantial reduction of the greenhouse gas CO <sub>2</sub> is accepted to be a necessity to mitigate the effect. This is a major driver to the introduction of technologies to reduce CO <sub>2</sub> emissions, through improvement in efficiency, control strategies and the introduction of alternative combustion regimes (or combination modes). Pollutants from oil based combustion processes (such as particulates, carbon monoxide, nitrogen oxides, sulphur dioxide, lead, benzene and ozone) have detrimental health effects, particularly when concentrated in urban environments. Further development of technologies to reduce the origin of these pollutants in the combustion process, as well as post-combustion treatments, is required. Re-use and recycle targets for vehicles at end-of-life sets constraints on the materials used in their construction, and new solutions are required to minimise environmental impact. |

| Technological   | Developments of innovative solutions are required in the areas of engine and<br>powertrain, e.g. with new fuel types, including hybrid and fuel tolerant IC engines,<br>new engine materials and lubricants, together with electronics, sensors and software<br>(for both engine management and design and manufacture).                                                |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Political       | UK Government, European and International policies, regulations and legislation concerning transport, energy, $CO_2$ and other emissions, health and safety and waste management all affect the development needs. The UK has declared it will take a lead in Europe for the reduction of $CO_2$ with attendant wealth creation in the industrial and technology bases. |
| Infrastructural | The need to develop fuel and energy infrastructure in parallel to developments in new engine and powertrain solutions.                                                                                                                                                                                                                                                  |

Note that there is some overlap with Section 5.2, (HEAFV).

#### **EPT Technology Directions**

The expert opinion obtained during the construction of Version 1.0 of the roadmap is still relevant and valid, and is given at the end of this section for completeness. Review of this information in a workshop highlighted the following as the important themes for classification of technology directions:

- Thermal and mechanical efficiency
- Performance and driveability
- Emissions
- Reliability and durability
- Speed to market and cost
- Weight and size
- Safety

Whilst not superseding the data obtained in Version 1.0, the information below adds to it and represents current thinking on those aspects of technology introduction which are considered important.

#### **Thermal and Mechanical Efficiency**

Continuing advances in thermal and mechanical efficiency of engines is essential to improving fuel economy, with its beneficial effect on CO<sub>2</sub> and pollutant emissions. Improvements to engine efficiency of about 10% should be possible within 20 years through developing combustion technologies. Diesel engines have a greater efficiency potential then gasoline, and increasing use is predicted in Europe to achieve low fleet average CO<sub>2</sub> for light vehicles, although the future is likely to require multi-fuel capability. Gasoline direct injection is already available, although improvements are still needed to achieve good emissions performance. Technologies enabling downsizing of engines giving performance levels equivalent to today's larger engine sizes are particularly important. Advances in variable transmissions and control will allow better matching to engine performance characteristics, allowing more energy efficient operation.

| 0-5 years                                                                                                                                                                                      | 5 – 10 years                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10-20 years                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Advanced low viscosity lubricants<br>Low friction surfaces<br>Gasoline direct injection<br>Downsized boosted engines<br>Variable compressors<br>Camless on some engines<br>Bio-fuel capability | Flexible engines with respect to valve<br>actuation, boosting, fuel<br>Mixed combustion mode operation, such as<br>2/4 stroke<br>Waste heat recovery<br>Advanced cooling systems<br>Variable valve timing for air control<br>More camless engines<br>High cylinder pressure engines<br>Advanced tribological coatings<br>Transmission enables efficient engine<br>operation<br>Optimised engines for powering hybrids,<br>acting as a generator | More efficient transmissions, minimum<br>loss<br>Zero warm-up time<br>IC vehicles with electric drivetrain |

#### **Performance and Driveability**

Vehicle and engine manufacturers must meet consumer demand for improved vehicle performance and drivability whilst achieving the challenge of reducing fuel consumption and emissions. Downsizing engines to obtain thermal and mechanical efficiency will only become attractive when driving performance is maintained relative to the larger power units they replace, and without additional cost. Transmission improvements, e.g. automated manual gearboxes, continuously variable transmissions etc, will also enhance performance characteristics, particularly when coupled to advanced control strategies.

| 0-5 years                                                                                                                                                                        | 5 – 10 years                                                                                                                                                                                                                                                                                                                                                                          | 10 – 20 years                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advanced adaptive control methodologies<br>Efficient auto transmission, continuously<br>variable, infinitely variable<br>Automated manual transmission with<br>simple strategies | Smaller variable engines with high<br>specific power<br>Automated manuals with complex<br>strategies<br>Technologies for improved thermal loading<br>Advanced system modelling tools<br>Information enabled powertrain control for<br>efficiency and driveability<br>Fuel tolerant combustion technologies<br>Improved gasoline engine mid-range torque<br>to match diesel and hybrid | Engines capable of running on almost any<br>kind of fuel<br>Active control adapting to driving and<br>road conditions, minimising pollution and<br>response to safety systems, without<br>affecting driver intentions |

## Emissions

This is a major issue because of legislation already in place and planned, and worldwide sensitivity to aspects such as global warming and the effect of pollutant emissions on health (particularly in urban areas). The UK is targeting CO<sub>2</sub> reductions to achieve its commitment to the Kyoto protocol. The ACEA fleet average CO<sub>2</sub> voluntary targets of 140g/km fleet average for 2008 coupled with the UK requirement of 10% new car sales in 2012 emitting < 100g/km is driving development into this sector. Although no targets are set yet for commercial and off-road vehicles, the industry is likewise expected to achieve significant CO<sub>2</sub> reductions are the subject of Euro 4 legislation from 2005, with Euro 5 and Euro 6 timetabled for the 2010 to 2012 time frame. Technologies to improve engine efficiency, reduce pollutant generation during the combustion process, and post-combustion treatments to reduce and remove pollutant post-combustion clean-up required.

The development of alternative combustion modes and control strategies (for example mixed mode operation) are under development and expected to reach maturity. The technologies required for pollutant reduction are generally at the expense of CO<sub>2</sub> reduction, and continuing vigilance is required for prioritising the needs.

| 0-5 years                                                                                                                                                                                                                                                                                                                                                                       | 5 – 10 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 – 20 years                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Integrated starter alternator mild hybrid<br>systems on conventional engines<br>Engine recyclability<br>Feedback control of combined engine and<br>powertrain optimising emissions consistent<br>with driver intention<br>Diesel NOs catalytic traps<br>Variable valve timing for diesel<br>Particulate traps and treatment, matching to<br>generation rate<br>More GDI engines | Advanced combustion modelling tools<br>After treatment modelling tools<br>Low cost high durability particulate traps<br>Full diesel HCCI with high BMEP<br>Combustion sensors and feedback control<br>Ultra high pressure diesel injection<br>Flexible diesel fuel injection systems<br>Off-road vehicle engines match automotive<br>emission standards<br>Development of zero ash lubricants capable<br>of extended operational life and without<br>additives considered harmful to the<br>environment on disposal | Upgradeable vehicles to achieve emission<br>specifications<br>Global emission standards<br>Hybrids require engine runs in most<br>efficient mode all the time |

#### **Reliability and Durability**

Significant advances in engine and powertrain reliability and durability have been achieved in the past two decades and it is anticipated that this trend will continue. This has been possible from a combination of design for reliability and improvement in component quality. The ultimate goal is to achieve 'self-diagnosing' and 'sealed for life'engines, benefiting longer life, reduced pollution (from lubricant disposal), maintenance, cost and material consumption.

| 0-5 years                                                                                  | 5 – 10 years                                                                                                                    | 10-20 years             |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Low ash fuels and lubrication for after<br>treatment compatibility<br>On-board diagnostics | Oil condition monitoring<br>Control of combustion soot in lubricant<br>Flexible service intervals<br>Smart on-board diagnostics | Sealed for life engines |

## Speed to Market and Cost

The engine and powertrain represents a significant proportion of vehicle cost. Technologies to reduce design and development time, and improve the manufacturing process, have a significant role to play in reducing time to market and costs as (well as increasing value), therefore improving competitiveness. Advanced computation techniques are required which will aid virtual engineering, in areas such as combustion emissions and calibration.

| 0-5 years                                | 5 – 10 years                                                                                                                                                                                                                                                    | 10 – 20 years |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Knowledge capture and management systems | Automated drivability calibration<br>Modular engines and transmissions<br>Advanced transmissions allowing wider<br>application of engine types<br>Virtual emissions engineering and<br>calibration<br>Increasing use of plastics/composites in<br>transmissions |               |

#### Weight and Size

Weight savings to achieve fuel economy is a continuing requirement. Size reduction allows more flexibility in aerodynamic and safety designs. Application of new lightweight materials is a challenge, with value in use being a key parameter. Development of new materials will be constrained by the need to achieve legislated re-use and recycling targets, as well as performance under crash conditions.

| 0-5 years                                                                                  | 5 – 10 years                                                                                                                                                                                                                           | 10 – 20 years                                         |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Engine and powertrain materials audit<br>identifying opportunities for new material<br>use | Development of new lightweight and<br>functional materials<br>Low cost high stiffness materials<br>Low cost Ti powder for some components<br>Reduced size cooling systems<br>Increasing use of plastics/composites in<br>transmissions | Use of breakthrough materials, such as nano-materials |

#### Safety

Engine and powertrain design, operation and construction affect the behaviour of vehicles involved in accidents. Design must allow for integration into the vehicle structure to give as benign an effect as possible under accident conditions. Advances in sensors and controls and infrastructure communication technologies will allow the engine and powertrain to act in an appropriate way to prevent accidents and mitigate their effects.

| 0-5 years                                                                                                                     | 5-10 years                                                                                                    | 10 – 20 years |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------|
| Pit lane technology to limit vehicle speeds<br>Encourage end-of-life for old vehicles<br>Development of power control systems | Engine and powertrain networked to other<br>active safety devices on the vehicle and in<br>the infrastructure |               |

## **Technology Targets**

Technology target proposals appropriate to the EPT group were also considered in the workshop, and these are given in the following table. They should not been seen as definitive, but rather a view on suitable targets against which progress can be audited.

|                                         | 0-5 years                                       | 5-10 years                                                                                                                                                                                                                                                                                                                         | 10 – 20 years                                                                                                                                                                                         |
|-----------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermal and<br>mechanical<br>efficiency | Diesel fuel<br>economy 5%<br>better than<br>EU4 | High specific power output, 125 - 150 bhp/l<br>Engine management and vehicle management<br>capable of communication<br>50% Thermal efficiency diesel engine<br>Total engine fleet CO <sub>2</sub> 50% of current                                                                                                                   | 50% waste heat recovery<br>Diesel fuel economy 15% better than EU4<br>Gasoline fuel economy 20% better than EU4                                                                                       |
| Performance and<br>driveability         | Bhp/£<br>improves to<br>15% of 2002<br>level    | Bhp/£ improves to 30% of 2002 level<br>Modelling of combustion performance and systems in<br>real time and full correlation with engine<br>/transmission gives full virtual engineering capability<br>Boosted downsized engine drivability as good as<br>2005 NAengines<br>Diesel and petrol to have same perceived<br>performance | Engines can run on any fuel<br>Active performance control based on<br>environmental road conditions<br>Alternative engine and powertrains with<br>performance perceived to match diesel and<br>petrol |

| Emissions<br>(pollution and<br>noise) | NO <sub>x</sub> after-<br>treatment<br>efficiency<br>reaches 80%.<br>Particulate<br>filter life<br>240k km | Diesel NO. 50% less than EU4<br>After-treatment (gaseous and particle) without the<br>use of precious metals and with a total cost 75%<br>lower than 2005 systems<br>Diesel HCCI gives near zero particulates and NO.<br>with efficiency as 2005 diesel<br>Zero ash lubricants capable of extended operational<br>life and without additives considered harmful to the<br>environment on disposal Zero cost combustion<br>pressure sensing | All engine types capable of meeting emission<br>standards<br>Global emission standards harmonised<br>Engine toxic emissions lower than ambient<br>background levels<br>100% engine recyclability<br>Particulates "banned" < 1% of baseline figure                                                                          |
|---------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reliability and durability            |                                                                                                            | Full CAE capability for all reliability/durability warranty issues                                                                                                                                                                                                                                                                                                                                                                         | Truck engine life 200% year 2005 life<br>100% reliable 100% durable at 100k km<br>Affordable zero maintenance powertrain                                                                                                                                                                                                   |
| Speed to market<br>and cost           |                                                                                                            | Increase service intervals to 50k km, with sealed for<br>life being the ultimate target<br>Concept to job 1, 50% of current time: total system<br>cost reduction of 25%<br>Reduced cost high performance lubricant base stock<br>Robust virtual emissions engineering recalibration                                                                                                                                                        | Full virtual engineering capability<br>(prototype = job 1)<br>Customer engine powertrain specification to<br>delivery time 10% of 2005 level<br>Concept to production time 25% of 2005 level<br>All vehicles have powertrain sophistication of<br>premium vehicles by use of low cost<br>transmissions (plastic gears etc) |
| Weight and size                       |                                                                                                            | 50% increase in power and torque/kg (from 2005 level)                                                                                                                                                                                                                                                                                                                                                                                      | 100% increase in power and torque/kg (from<br>2005 level)<br>Engines 50% of year 2005 size and weight                                                                                                                                                                                                                      |
| Safety                                |                                                                                                            | Engine management and internal and external safety<br>systems capable of communication<br>Reduced cooling system size                                                                                                                                                                                                                                                                                                                      | Engine and powertrain benign effect with respect to vehicle safety                                                                                                                                                                                                                                                         |

## **Research Priorities**

Improve combustion processes, to reduce CO<sub>2</sub>, emissions and noise, with capabilities to use different fuel types. Example technologies include fuel injection, valve actuation, variable compression ratios, adaptive calibration, combustion condition sensing (in-cylinder), and improved knowledge of the combustion process leading to virtual engineering tools.

Develop alternative and combined combustion modes. A significant change in emissions performance of engines will be required to make further reductions. Example technologies include the introduction of homogeneous charge compression ignition, (HCCI also known as controlled auto-ignition CAI), and multimode operation to optimise performance with respect to emissions. For HCCI/CAI in particular, control technologies to extend the operating speed and load cycle are required, linking fuel mixing and combustion sensing.

Improve emissions controls in response to legislative targets, social demand and to reduce the environmental burden associated with vehicles. Challenges include achievement of effectiveness through downsizing, waste energy recovery, low cost efficient post-combustion after treatment and particulate traps.

Downsizing of the powertrain system is required for efficiency, whilst improving power density to reduce weight, material usage, cost and space requirements. Challenges include boost technologies, novel thermal management, use of new materials and lightweight structures, lubricant performance, and reduction of parasitic losses through the use of 'smart', independently powered auxiliary equipment.

Virtual design, to increase speed to market, reduce technology and product development risks, reduce design and manufacturing costs, and to optimise integrated systems. Challenges include development of robust simulation, correlations and validation, development and application of knowledge bases, faster rollout of designs and products, and holistic tracking of attributes. Example technologies include simulation (of functional attributes, manufacture and tooling), knowledge-based design, virtual and self-calibration, integration of research and virtual engineering with marketing and business planning, and modularisation.

'Zero' servicing, to increase consumer convenience and to reduce costs (especially for trucks and buses) and environmental impact (disposal of used fluids). Challenges include improved tribology, condition monitoring, fault tolerance and self-diagnosis and repair. Example technologies include sensors, agecompensation control, onboard diagnostic systems, telematics, failure modelling and prediction, advanced lubricants, additives and filtration, coatings, bearing materials, design concepts, inhibition of corrosion and cracking, and advanced sealing/fastening systems.

#### **Overview**

The technologies covered by the EPT Thematic Group will make a significant contribution to the following major drivers for the vehicle sector.

#### Environment

The UK is committed to international protocols targeting significant reduction in the emission of greenhouse gases, such as CO<sub>2</sub>, to combat the perceived threat of global warming and its consequences. As the vehicle sector is a significant contributor to these emissions, development of engines and powertrains are required which will reduce their impact, by becoming more fuel-efficient. Targets are already in place for the UK passenger car fleet, and although no targets are set currently, commercial and off-highway vehicles are also required to make significant improvements as part of UK policy. The technologies covered by the EPT Thematic Group will have a significant impact on the achievement of these requirements, though improvement in efficiencies and the development of advanced combustion modes and controls.

#### Health

Legislation continues to drive the reduction in pollutant levels associated with health risks, with Euro 4 applicable from 2005, and reduced pollutant levels planned in Euro 5 and Euro 6 likely in the 2010 to 2012 timeframe. Engine and powertrain efficiency improvements will also impact this achievement of these levels, as will technologies to reduce or eliminate pollutants post-combustion.

#### **Economics**

Reduction in ownership cost, operational and capital, is required both by the commercial sector and private users. Improved engine and powertrain efficiency coupled with the drive for increased maintenance intervals and longevity will benefit from the technology developments in the EPT theme. Advances in manufacturing, including the use of computer modelling tools to give a virtual engineering capability, will aid development time and help contain capital costs.

#### Safety

Opportunities exist in linking advanced engine and powertrain controls to accident prevention and mitigation systems (as described in the ASSET technology theme), to benefit reduction in accidents and their effect.

# **EPT Technologies from Version 1.0**

#### Engine and powertrain technology (EPT)

#### Efficiency, performance and emissions

| 20                                                                                                                                                                                                                                        |                                                                                                                                                                                                  | 07                                           | 20                                                                                                                                                     | 12                                                                                            |                                                                                                                                                                                                                  | 20                                                                                                           | 17 20                                                                                                    | 2032                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Thermal &<br>mechanical<br>efficiency<br>Integrated engine /<br>transmission control                                                                                                                                                      | Efficiency:<br>40% Diesel<br>30 % Gasoline<br>Smart cooling /<br>lubrication system                                                                                                              | Energy recovery<br>hybrids<br>Energy storage | Efficiency:<br>45% Diesel<br>40% Gasoline<br>Heat recovery                                                                                             | Integrated sy<br>achieve high<br>efficiency<br>'N <sup>th</sup> ' generati<br>direct injectio | er system (<br>Thermal to                                                                                                                                                                                        | Fuel improvements<br>Combustion<br>olerates alternative/<br>enewable fuel blends<br>Exhaust<br>heat recovery | Efficiency:<br>50% Diesel<br>40% Gasoline                                                                | Efficiency:<br>55% Diesel<br>(peak)<br>HD pressure: |
| Transmission efficiency<br>Valves/gas flow management<br>Compound heavy duty (HD)<br>diesel engines<br>HD pressure: 170 bar<br>(max. cylinder pressure)                                                                                   | Throttling at<br>inlet valves                                                                                                                                                                    | Flywheel starter -<br>generator              | Camless on<br>50% vehicles<br>CNG fleet<br>(trucks &<br>buses)                                                                                         | Flexible engi<br>Materials<br>available<br>for higher<br>temperature<br>combustion            | ne cycles<br>Feedback contro<br>of combustion/<br>injection proces                                                                                                                                               | on trucks<br>ol Cylinder<br>pressure                                                                         | Other prime<br>mover<br>Hydrogen IC<br>engine truck /<br>bus fleet &<br>efficient H <sub>2</sub> storage | 250-300 bar<br>(max. cylinder<br>pressure)          |
| Performance &<br>driveability<br>Airflow management<br>How to provide feedback to<br>driver if engine is very quiet?<br>(e.g. gear change)<br>Traction control<br>Performance and driving<br>experience of diesel<br>compared to gasoline | Compact<br>lightweight<br>gearboxes<br>with more<br>ratios<br>Auto-shift<br>manual<br>gearbox on<br>50% of<br>vehicles                                                                           | Electric v<br>& oil pur                      |                                                                                                                                                        | Downsizing<br>and octane-<br>boosting<br>20% efficient<br>CVT (continu<br>variable trans      | iously                                                                                                                                                                                                           | very of ate of Safe                                                                                          | Increasing<br>demand for<br>'track day'<br>leisure<br>outings                                            |                                                     |
| Fast start-up / warm-up<br>Emissions<br>(pollution and<br>noise)                                                                                                                                                                          | CNG (compressed<br>natural gas) loosing<br>favour?<br>PM traps on a few<br>vehicles<br>Noise (intake, exhaust,<br>shields)<br>Optimised after-<br>treatment<br>Conventional diesel<br>combustion |                                              | Self-diagnosis<br>No cold<br>start pollution<br>Noise in heavy<br>vehicles<br>Low noise<br>cooling fans<br>widely available as<br>sions-reducing agent | GPS<br>Particulates I<br>Emissions<br>control for<br>PM size<br>New b<br>NOx a                | ol interface to telema<br>(emissions, safety)<br>(< PM 1)<br>Traps on everything<br>Cleaner air quality<br>achieved (focus shift<br>to CO <sub>2</sub><br>reak through<br>fter treatment<br>h / nanotech / etc.) | Sealed<br>engine<br>Lubricant<br>reduced wear<br>Engine okay                                                 | CNG<br>making a<br>comeback?                                                                             |                                                     |

#### Engine and powertrain technology (EPT)

## Reliability, development and weight 2017 2022 2032

| 20                                             | 002 20                                                                                                                                                                                                                                 | 07                                                                                             | 20                                                                                                                                                                                                                                                                                                       | 12                                                          |                                                                                                                                    | 20                                                                                                                                       | 17 20                                                                                                                     | 22 2032                                                                                                                                                                                                                                                                              |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reliability and durability                     | Increased service<br>intervals (15,000 miles)<br>Oil quality sensors                                                                                                                                                                   | mar<br>syst<br>disp<br>s<br>f                                                                  | Increased service<br>intervals<br>(30,000 miles)<br>ricant quality<br>agement<br>ems for zero<br>osal<br>Structural solutions for<br>high cylinder pressure,<br>there berefer                                                                                                                            | diagnosti                                                   |                                                                                                                                    | "Sealed for<br>life" lubrication<br>& relevant sensor<br>Technology<br>(wear, life)<br>Car services<br>itself<br>via OBD &<br>telematics | Dry<br>lubricants &<br>coatings<br>How long should<br>a vehicle last?<br>(environment vs.<br>undesirable<br>obsolescence) | Zero faults<br>for life                                                                                                                                                                                                                                                              |
| Speed to market<br>and cost<br>Weight and size | Common platforms<br>Modularisation<br>of flexible<br>manufacturing<br>tooling<br>Simulation of<br>powertrain<br>systems<br>Increasing<br>specific power<br>output<br>New liner-<br>less bore<br>technologies<br>for shorter<br>engines | Virtual powertrain<br>calibration<br>Non-ferrous<br>gears<br>Downsizing &<br>good driveability | trive torque, etc.<br>Reliable life<br>prediction for<br>non-ferrous<br>alloys<br>Virtual engine<br>simulation<br>Lower cost<br>power<br>electronics<br>Composite<br>transmission<br>structures<br>(including<br>"plastic")<br>Composite<br>engine structure<br>Delete ancillary drive<br>(R Cam drive?) | materials) sy<br>pa<br>Knowledge-<br>based Lo<br>design (in | syste<br>elf calibration<br>(stems (maybe just<br>artially)<br>ow cost batteries<br>ncluding new<br>(chnology)<br>y roll-out (e.g. |                                                                                                                                          |                                                                                                                           | Time-to-market<br>reduced to<br>minimum,<br>eradicating<br>all non-value-<br>adding activities<br>(e.g. 1 year)<br>Zero lost market<br>opportunity<br><i>Every</i> product<br>makes a cost<br>contribution to<br>the business<br>Weight &<br>size never<br>compromise the<br>vehicle |

# 5.2 Hybrid, Electric and Alternatively Fuelled Vehicles

#### Scope

The Hybrid, Electric and Alternatively Fuelled Vehicles (HEAFV) technology theme includes the following vehicle systems and functions:

- Application of new and alternative fuel types, such as hydrogen, LPG, CNG, LNG, bio-diesel and bioethanol/methanol.
- Conversion of energy in conventional and alternative fuels to useful mechanical power.
- Electrical motors for vehicle propulsion, storage systems, hybrids and fuel cells for converting fuels directly to electrical energy.

Note that there is commonality between some of these areas and those covered by the Engine and Powertrain Thematic Group, although the applications are different between the groups.

Market and industry trends and drivers that are particularly relevant to this technology theme include:

| Social        | Desire for less polluting vehicles with today's level of performance or better, without cost inflation. Although the public are becoming aware of the possibility of climate change through publicised extreme weather events (and in fictional films), it is not yet affecting vehicle purchase behaviour. Performance and cost effectiveness demonstrations are needed for this to happen. Increasing urban population density will also act to aid the introduction of quieter and less polluting vehicles.   |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Economic      | Recent (2004) oil price instability caused by international events coupled with the supply/demand equation are likely to lead to oil price rises continuing as a long term trend unless significant new and accessible reserves are found. This will act as a driver for the introduction of propulsion technologies which use less (or no) oil-derived fuels. Recent improved efficiencies of conventional fuel and engine systems may represent barriers to entry in the short term for alternative solutions. |
| Environmental | Global warming is now widely accepted as a fact and the safe assumption is that the results will be unpleasant and undesirable. Substantial reduction of the greenhouse gas $CO_2$ is accepted to be a necessity to mitigate the effect. This is a major driver to the introduction of technologies to reduce $CO_2$ emissions, with a desired target of eliminating it completely.                                                                                                                              |
|               | Pollutants from the combustion process are known to cause detrimental health effects, particularly in urban environments. This leads to the development of                                                                                                                                                                                                                                                                                                                                                       |

methods for the reduction and treatment of gaseous pollutants and particulates.

| Technological   | There is a requirement to develop efficient new fuel and power systems, such as<br>hydrogen and fuel cells, together with hybrid powertrains and fuel tolerant internal<br>combustion systems. Many suitable technologies exist (at least at the laboratory<br>stage), but are not yet mature enough for volume application, requiring substantial<br>work to be done on cost effectiveness, efficiency, reliability and durability. Lack of<br>maturity of the technologies is such that it is not yet possible to define a<br>development path, so a broad research and development front is needed. |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Political       | UK Government, European and International policies, regulations and legislation concerning transport, energy, CO <sub>2</sub> and other emissions, health and safety and waste management all affect these vehicles. The UK has declared it will take the lead in Europe for the reduction of CO <sub>2</sub> with attendant wealth creation in the industrial and HEI bases.                                                                                                                                                                                                                          |
| Infrastructural | New engine solutions need to be developed in parallel to the establishment of associated fuel and infrastructure. New fuels and propulsion units can be trialled on captive, single base, fleets, e.g. buses and public service vehicles, and possibly also with construction vehicles.                                                                                                                                                                                                                                                                                                                |

## **HEAFV** Technology Directions

The expert opinion obtained during the construction of Version 1.0 of the Technology Roadmap is still relevant and valid, and is given at the end of this section for completeness. Review of this information in a workshop highlighted the following as the important themes for classification of technology directions:

- Fuel cells
- Hybrid powertrains
- Advanced internal combustion engines
- Electrics and electronics
- Conventional and alternative fuels
- Systems integration and infrastructure
- Design and manufacture

Whilst not superseding the data obtained in Version 1.0, the information below adds to it and represents current thinking on those aspects of technology introduction which are considered important.

#### **Fuel Cells**

It is becoming increasingly accepted that only a radical change in energy usage can bring about a reversal of global warming by significant reduction in  $CO_2$  emissions. The vision of a future hydrogen based energy economy is gaining ground with the mobile fuel cell central to the conversion of chemical to electrical energy. Significant barriers remain to be overcome, and the continued development of fuel cells to improve efficiency and power will continue, with demonstration and evaluation of concepts being key to reducing uncertainties. Listed below are the actions which are considered most important.
| 0 - 5 | years |
|-------|-------|
|-------|-------|

Introduction of demos of fuel cell technology, bike, car, bus, truck Development of a range of fuel cell engines that can be integrated into vehicles Hydrogen storage and cost (high Pt content)

#### 5 - 10 years

Alternative power generation Demonstration of high well to wheel efficiency FC component improvement increases system efficiency 10 - 20 years

Fleet development Significant market penetration High efficiency electrical machines, controllers and batteries

#### **Hybrid Powertrains**

Hybrid powertrains, particularly when coupled with advanced IC engines, offer a route to improved fuel efficiency and therefore reduction of  $CO_2$  emissions and pollutants. They have a crucial role to play in terms of enabling migration to the widespread use of alternative fuels. The development of low cost hybrids capable of matching and exceeding conventional engine performance are necessary if they are to become acceptable to the public and provide a route to the acceptance of alternatively fuelled vehicle types. Application of hybrid powertrains to vehicles such as buses is already in use, and this gives a means for evaluation of technologies as well as improving emissions in an urban environment.

| 0-5 years                                                              | 5 – 10 years                                                                                                                                                                                    | 10 – 20 years                                                  |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Mild hybrids<br>Enabling research on magnetic materials<br>for hybrids | Low cost high efficiency electric motors<br>and controllers<br>Low cost engines for hybrid vehicles<br>In-home fast battery charging<br>Battery life and cost<br>Significant market penetration | High efficiency electrical machines, controllers and batteries |

### **Advanced Internal Combustion Engines**

Opportunities exist for the development of advanced IC engines optimised for powering hybrid vehicles, matched to the load cycles experienced in these applications. Highly downsized engines, with significant fuel economy are feasible in the short to medium term. Developments enabling migration to the widespread use of alternative fuels such as CNG, LPG, LNG and bio-diesel, are expected, as well as power units with multi-fuel capability. Common issues exist with the development path for more conventional engines as given in the Engine and Powertrain Thematic Group, with convergence of technologies a possibility. In the medium term, overcoming the control issues with HCCI/CAI engines will benefit pollutant and particulate emissions for oil derived fuel propulsion.

| 0-5 years                                                                                                                      | 5 – 10 years                                                                                                                                                                                       | 10 – 20 years |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Highly downsized boosted engines<br>Emissions control with reduced CO <sub>2</sub><br>penalty<br>Optimum cycle (e.g. HCCI/CAI) | Gasoline engine CO <sub>2</sub> reduction<br>Location based control for efficiency and<br>emissions<br>Throttleless engines<br>GDI<br>Multi-fuel<br>Waste energy recovery<br>Intake charge cooling |               |

### Electrics and Electronics (for energy and drive systems)

Fuel cell and other new energy drive systems require parallel development of the electric and electronic systems for energy storage, engine management and control, power generation, conversion and transmission. Reduction of parasitic energy loss through independently driven auxiliary equipment gives opportunities, particularly if coupled with supplementary on-board alternative energy generation e.g. using photo-voltaic systems. High efficiency, low weight and low cost electric motors are required, as are efficient electrical storage systems capable of servicing the load cycle requirements of the vehicle.

| 0-5 years                                                                                                                                                                                                                                           | 5-10 years                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 – 20 years |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Improvements in auxiliary systems<br>Electric steering<br>Advanced network control systems<br>Enabling research on magnetic materials<br>for hybrid/fuel cells application<br>Longer life battery technology<br>High power density low loss silicon | On board diagnostics to dealer. Repair<br>options parts already ordered<br>Sensor fusion for low cost and high<br>reliability<br>Fail safe and fault tolerant control systems<br>Combustion feedback based control for<br>flex fuel<br>Electric braking and regeneration<br>Higher efficiency lighting<br>Advanced high power battery technology<br>Improved efficiency electric motors<br>High voltage vehicle systems<br>Higher power density energy storage media |               |

### **Conventional and Alternative Fuels**

The cost of oil derived fuels is continuing to rise, and as the global demand for energy depletes oil reserves, this trend is likely to increase in the longer term. Coupled with the need to reduce CO<sub>2</sub> emissions which is providing a significant stimulus to improve engine efficiency, there will be pressures to move towards low-or neutral-carbon fuels such as bio-diesel and hydrogen. New fuels, vehicle systems and supply infrastructure need development in parallel, and a number of competing solutions are likely.

| 0-5 years                                                                                                                                                        | 5 – 10 years                                                                                                                                                                        | 10 – 20 years                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Dedicated alternative fuels<br>LPG, CNG, bio-fuels<br>Lower sulphur diesel and gasoline<br>Seal materials for bio-fuels<br>H <sub>2</sub> in a few city stations | Fuel via the internet/home fuelling CNG<br>capability<br>Alternative fuels emerge in greater<br>numbers oil/alt = 50/50<br>Bio-diesel infrastructure development<br>(field to pump) | Oil based fuels minority rather than<br>majority<br>H <sub>2</sub> or alternative fuels from nuclear<br>energy<br>H <sub>2</sub> freely available |

### System Integration and Infrastructure

As well as the individual components of e.g. fuel cells, hybrid power units and drive systems, the integration of such systems into the vehicle infrastructure needs careful consideration. This needs to link into such themes as overall system thermal management, and the powering and deployment of auxiliary components.

| 0-5 years                                                                                                                                                                                                                                                                                                                                                                                           | 5 – 10 years                                                                                                                                                      | 10 – 20 years                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Routing, OBD, digital tacho,<br>communication engine and gearbox<br>management<br>Integrated management of energy available<br>between all systems<br>System approach to overall vehicle design<br>Vehicle thermal management<br>Focus on efficiency<br>Integration of internal high integrity vehicle<br>infrastructure<br>Demonstration of clean hydrogen refuelling<br>Hydrogen from natural gas | Vehicle thermal management<br>Zero emission hydrogen refuelling<br>Driver style/trip adaptation to enhance<br>efficiency<br>Hydrogen from electrolysers beginning | Vehicle thermal management<br>Most hydrogen from electrolysers |

### **Design and Manufacture**

The introduction of hybrid, electric and alternatively fuelled vehicles requires effective design of the whole vehicle and economic manufacturing systems, linked through design for manufacture. Design and use of materials need to consider, particularly, crashworthiness and the requirements for recycling and/or reuse at the end of vehicle life. Use of lightweight structures and materials to capitalise on energy saving is seen as an enabler, linking with themes in the FASMAT and DMaP Thematic Groups.

| 0-5 years                                                                                                                       | 5 – 10 years                                                                                                                                             | 10 – 20 years                       |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Tools, techniques and processes for rapid<br>product development and reduced time<br>to market<br>Supplier led vehicle concepts | Supplier led vehicle concepts<br>Techniques and processes for rapid product<br>development<br>High specific strength materials to reduce<br>vehicle mass | Low cost driver training simulators |

### **Technology Targets**

Technology target proposals appropriate to the HEAFV group were also considered in the workshop, and these are given in the following table. They should not been seen as definitive, but rather a view on suitable targets against which progress can be audited.

|                       | 0-5 years                                                                                                                                              | 5 – 10 years                                                                                                                                                                                                                                                                                      | 10 – 20 years        |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Fuel cells            | Adopt DoE targets e.g. > 300 mile<br>range<br>Whole vehicle design for fuel cell<br>system<br>Efficient low cost blowers for FC<br>5% of new car fleet | Efficiency of FC system (DoE) > $60\%$ LHV at 25% load, > $50\%$ LHV at 100% load<br>Achieve "Powering future vehicles" low<br>carbon targets for uptake<br>1 month 50% leakage gaseous H <sub>2</sub> storage<br>Adopt US DoE target sets for automotive<br>applications<br>25% of new car fleet | 50% of new car fleet |
| Hybrid<br>powertrains |                                                                                                                                                        | Reduction in waste heat by 50%<br>On-cost of hybrid systems justified by fuel<br>savings in first 3 years                                                                                                                                                                                         |                      |

| Advanced<br>internal<br>combustion<br>engines | Reduction in parasitic engine load<br>by 25%<br>> 35% efficiency<br>Gasoline engine CO <sub>2</sub> equivalent to<br>2004 diesel car for same<br>performance<br>20% of new vehicle fleet | > 35% efficiency<br>50% of new vehicle fleet                                                         | > 40% efficiency<br>90% of new vehicle fleet                                                                                                                 |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electrics and electronics                     | Advanced motors to improve packaging                                                                                                                                                     | Improvement in motor life, weight and efficiency by 20%, 15%, 5%                                     |                                                                                                                                                              |
| Conventional<br>and alternative<br>fuels      | Bi fuel gasoline alternative fuel<br>engines optimised for alternative<br>fuels<br>CNG/LPG engines run gasoline as<br>back-up<br>Enough hydrogen for 15% of new<br>vehicle fleet         | $H_{\rm 2}$ storage retaining $>75\%$ fill over 2 weeks Enough hydrogen for 50% of new vehicle fleet | 20% biofuel in (alternative) fuel<br>chain by 2020<br>Highly boosted H <sub>2</sub> fuelled IC<br>engines<br>Enough hydrogen for 75% of<br>new vehicle fleet |
| Systems<br>integration/<br>infrastructure     | Integration of fuel cell system to<br>vehicle with focus on auxiliary<br>components e.g. power electronics,<br>motors, air conditioning                                                  | Unpack vehicle targets into component and controller specs                                           | Fully integrated system of of<br>wind turbines, PV's, tidal<br>power, electrolysers making<br>renewable hydrogen                                             |
| Design and manufacture                        | Design manufacturing processes<br>for economic production of batch<br>volumes                                                                                                            | Major reduction in unladen weight of HGV's                                                           |                                                                                                                                                              |

### **Research Priorities**

Design verification actions requiring small fleets of identical vehicles, delivering statistical data on vehicle performance and gaining customer engagement.

Evaluation procedures for component performance and input data for models. Processes are needed for technology-neutral objective evaluation of proof-of-concept prototype components, systems and vehicles that are based on competing technologies.

Powertrain system control strategies and implementation.

Internal combustion engines and fuels designed for use in hybrid vehicles, recognising their load cycles.

Components for electric powertrains, particularly high efficiency, low weight and low cost electric motors, managing the heat problem as well as direct benefits.

Electric energy storage, recognising load cycles.

Hydrogen storage on board.

Fuel cell ancillary systems.

Vehicle/infrastructure systems for efficient and low emission vehicle missions and urban operation.

### **Overview**

The technologies covered by the HEAFV Thematic Group will make a significant contribution to the following major drivers for the vehicle sector.

#### Environment

The UK is committed to international protocols targeting significant reduction in the emission of greenhouse gasses such as CO<sub>2</sub> to combat the perceived threat of global warming and its consequences. The pathways to the future have been well researched and documented. However, the technologies that are available today and which have the potential to significantly reduce or eliminate CO<sub>2</sub> emissions still have to come to maturity. Research and development work is needed on a broad front so that decisions can be made on the selection of the most appropriate route to a future low carbon economy. As well as advances in internal combustion engine emission characteristics, electrical machinery development plays a major part, with advances needed in efficiency of motors and charge and other energy storage devices.

#### Health

The combustion of oil based fuels in internal combustion engines produces noxious substances and particulates which are injurious to health. Although advances have been made in engine designs which have significantly reduced these, there are still opportunities to reduce these further both by advances in internal combustion engine technology, and the use of different propulsion systems such as hybrids or fuel cells. European Directives (Euro 5 and Euro 6) are expected in the 2010 to 2012 time frame which will set targets for pollutant reduction, both for light and heavy vehicles.

#### Economy

With oil price rises likely as demand increases and reserves become insecure and slowly decline, work is needed to both to improve engine efficiencies and to use alternative, non-oil derived fuels. This will include bio and natural gas derived fuels as well as hydrogen, eventually from renewable sources.

| Hybrid, electric                                      | and alternatively fuelle                                                                                                                                                                                                                                                                                                                                                                             | ed vehicle technolog                                                                                                                                                                                                                                             | / (HEAFV)                                                                              |                                 | Hydrogen                                                                                                                                                                                                                                      | and fuel cells                                                                                                                                         |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20                                                    | 002 2                                                                                                                                                                                                                                                                                                                                                                                                | 007                                                                                                                                                                                                                                                              | 2012                                                                                   | 2017                            | 7 20                                                                                                                                                                                                                                          | 22 2032                                                                                                                                                |
| Fuel cell &<br>ancillary<br>- design &<br>manufacture | Fuel cell (FC) / hybrid - needs to<br>be able to drive off immediately<br>Cryogenic H <sub>2</sub> storage<br>Onboard high pressure<br>reforming H <sub>2</sub> vessels<br>to H <sub>2</sub> 2006+<br>Need to be<br>APUs for<br>withstand pre-heating,<br>storage cooling<br>at -25° C (& catalyst<br>H <sub>2</sub> explosive potential<br>H <sub>2</sub> safety case<br>(vehicle & infrastructure) | Hybridisation<br>(H <sub>2</sub> (fuel cell)IC engine)<br>Support<br>Technologies &<br>systems for FCs<br>- air supply<br>- control electronics<br>- thermal<br>Ouile compressors<br>developed<br>Efficient<br>chemical H <sub>2</sub> vehicle<br>storage system | C & vehicles<br>ms Switch-in / switch-out<br>' FC engine design for<br>MRO convenience | mind P<br>re<br>ox<br>ce        | <hybrids fc=""><br/>(infrastructure<br/>in place)<br/>FC economics<br/>(economies of<br/>scale) -<br/>competitive vs.<br/>IC engine<br/>PEM fuel cells<br/>eplaced by solid<br/>xide / ceramic fuel<br/>ells in heavy<br/>utomotive</hybrids> | No oxide<br>materials required<br>= PEMs<br>'Next generation'<br>FC design<br>- materials<br>- structures<br>- subsystems<br>- (20 KW/litre<br>output) |
| 'Total' vehicles                                      | FC & motorsport<br>FC van,> bus> car<br>UK components,<br>under<br>road<br>evaluation                                                                                                                                                                                                                                                                                                                | Regional evaluation<br>of UK - sourced FC<br>vehicle fleets (10 buses,<br>100 vars)<br>Passenger<br>transport<br>system becomes<br>acceptable                                                                                                                    | vehicles (50% plant                                                                    | me n<br>ufacture L<br>for FC fr | TV audience Integration   Shown how of public /   o build private   FC from transpor-   formaterials tation   cong distance coach / reight vehicles (50%   FC use) FC                                                                         |                                                                                                                                                        |
| Infrastructure                                        | Distributed<br>generation of<br>H <sub>2</sub> at the local<br>level<br>- prototypes 2004<br>- commercial<br>introduction 2006<br>- issue of regulation<br>changes required                                                                                                                                                                                                                          | Need resolution<br>to problem of gas<br>(only) powered<br>vehicles not allowed 2010<br>in tunnels or Bio-fuel<br>on some bridges gasifica<br>for H <sub>2</sub> fr<br>product<br>econorr                                                                         | re-ruei the venicle)<br>r H <sub>2</sub> made at home<br>on from tap water &           | g<br>tc<br>than d               | Onboard electricity<br>generating facility used<br>o power household<br>vhen standing in the<br>trive                                                                                                                                         | 50% of<br>transport<br>energy needs<br>from renewable<br>sources                                                                                       |

### Hybrid, electric and alternatively fuelled vehicle technology (HEAFV)

### Hybrid and advanced IC engines

| 20                                                                                                                                                                                                                                                | 02 20                                                                                                                                                                                              | 07                                                                                                                                                                                                             | 20                                                                                                           | )12 20                                                                                                                                                                                                  | 017 20                                                                                                                           | 2032                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Market<br>- IC pilot / demonstration<br>(2000)<br>- Fleet of 15 vehicles                                                                                                                                                                          | Production of H <sub>2</sub> IC<br>vehicles for sale to public<br>Several manufacturers<br>develop H <sub>2</sub> IC engines<br>Truck/bus with diesel<br>or compressed natural<br>gas (CNG) engine | H <sub>2</sub> IC engine<br>developed for<br>commercial<br>vehicles                                                                                                                                            | 2.5 % of new cars with $H_2$ IC (dual fuel)<br>Fleets of trucks / buses with $H_2$ IC engine                 | $\rm H_2$ FC: 1% penetration<br>- H_2 available for IC<br>engine also (or vice versa)                                                                                                                   | Diesel & gasoline<br>from renewables<br>> 20%<br>100,000 FC<br>vehicles?                                                         | Diesel &<br>gasoline from<br>renewables<br>feasible to replace<br>crude oil><br>50% vehicle fleet<br>running on H <sub>2</sub> |
| <b>Government</b><br>- Zero tax on H <sub>2</sub> fuel<br>(April 2002)<br>- Consensus among<br>vehicle manufacturers<br>that H <sub>2</sub> is important fuel<br>of the future<br>(March 2002)                                                    | Downsized IC engine<br>& mild hybrid                                                                                                                                                               | gas                                                                                                                                                                                                            | CI combustion<br>oline / diesel<br>/ emissions)                                                              | Zero tax on<br>H <sub>2</sub> replaced by<br>progressive well to<br>wheel carbon tax<br>(zero for H <sub>2</sub> from<br>renewables)<br>HCCI IC engine<br>IC engine & combustion bespoke                | Breakthrough Disruptive<br>technology? technology?                                                                               |                                                                                                                                |
| Combustion<br>technology                                                                                                                                                                                                                          | H <sub>2</sub> engine<br>- lower mass<br>- smaller engine<br>- lighter vehicle<br>- "virtuous cycle"                                                                                               | Fee<br>con<br>for i<br>cap<br>gas                                                                                                                                                                              | edback<br>nbustion control<br>multi-fuel<br>ability (H <sub>2</sub> vs.<br>oline, crude<br>ved vs. bio-fuel) | hydraulic H <sub>2</sub> IC design for<br>hybrid engine hybrid<br>(bus / coach?)<br>H <sub>2</sub> only IC engine with increased<br>compression ratio & cryogenic<br>injection machines (FC efficiency) | (exhaust (battery -<br>heat recovery cheap, high<br>on IC power<br>engine) density)                                              |                                                                                                                                |
| Energy storage<br>- Chemical (conventional<br>fuel / bio-fuel<br>- Battery technology                                                                                                                                                             | 2004:<br>UK engine<br>capacity reaches<br>4 million units                                                                                                                                          | Mechanical<br>(flywheel)<br>and thermal<br>storage<br>systems                                                                                                                                                  | Efficiency of<br>generation of<br>LH <sub>2</sub> improves<br>to 20% energy<br>loss                          | LH <sub>2</sub> onboard 42V standard<br>storage 2 weeks on most<br>before boil-off vehicles?<br>begins                                                                                                  | Breakthrough technology?<br>(H <sub>2</sub> storage from nano-<br>technology, bio-technology)<br>Reversible FC<br>energy storage |                                                                                                                                |
| Infrastructure<br>- Method of H <sub>2</sub> production<br>- Environmental cost of<br>production<br>- Provision of H <sub>2</sub> refilling<br>stations<br>- H <sub>2</sub> supply (bulk, locally<br>generated, standards,<br>safety regulations) | LH <sub>2</sub> IC engine<br>vehicles operating as<br>bi-fuel (simplify<br>introduction of fuel<br>infrastructure)<br>Infrastructure for<br>LH <sub>2</sub> starts -<br>London, 2003               | Use of H <sub>2</sub> as transport<br>fuel dramatically<br>improves renewable<br>energy economics<br>& stimulates investmen<br>Photo-voltaic cell<br>producing H <sub>2</sub> directly<br>goes into production | 20 LH <sub>2</sub><br>t filling<br>stations                                                                  | $1,000 \text{ LH}_2$ filling stations LH $_2$ filling stations LH $_2$ fuel infrastructure available for FC vehicles                                                                                    | H <sub>2</sub> produced<br>at vehicle owner's<br>home (from<br>CH <sub>4</sub> supply)                                           |                                                                                                                                |

| :                           | 2002 2                                                                                                                                                                                                           | 007                                                                                                                                                                 | 20                                                                              | 12                                                                                                                                                      | 2017 2                                                                                        | 022 203                                                                                                      |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Energy<br>storage<br>system | Research     Energy / power       in improved     hybrids (lead acid &       cell chemistry     supercap)       & engineering,     and H <sub>2</sub> storage       Lead acid for HEVs     - high power (50W/Kq) | Lithium for EV & HGV<br>meets full temperature,<br>specification,<br>cost (\$300/KWh),<br>safety (organics recycling)<br>High temperature,<br>high power (500W/Kg), | Hydraulic<br>energy<br>storage<br>(improved<br>energy<br>storage<br>in general) | - m                                                                                                                                                     | wheels Electrical<br>aterials power<br>afely from<br>ost roadway                              | Low cost<br>superconductor<br>based energy<br>storage                                                        |
|                             | - long life (3 years)<br>- \$150/KWh (including BMS)                                                                                                                                                             | low cost (\$300/KWh)<br>Lead acid:<br>800 W/Kg, 10 year life, \$1                                                                                                   | 50/KWh                                                                          |                                                                                                                                                         |                                                                                               |                                                                                                              |
| Engine                      | Engine optimised                                                                                                                                                                                                 | Single piston                                                                                                                                                       |                                                                                 | Maintenance free engine<br>Gas turbine (efficiency Compos                                                                                               | -11-                                                                                          | FC cost at                                                                                                   |
| Liigilio                    | for hybrid                                                                                                                                                                                                       | engines                                                                                                                                                             |                                                                                 | as good as diesel) engine                                                                                                                               | sie                                                                                           | \$ 3,000/vehicle                                                                                             |
|                             |                                                                                                                                                                                                                  |                                                                                                                                                                     |                                                                                 | Ultra high speed, low cost generator                                                                                                                    |                                                                                               |                                                                                                              |
| Power                       | 5 th block of the                                                                                                                                                                                                | New silicon<br>switching devices                                                                                                                                    |                                                                                 | Higher Very lightv                                                                                                                                      | Super magnets<br>& high temperature                                                           |                                                                                                              |
| converter                   | Fully integrated<br>power converter                                                                                                                                                                              | Silicon Power co<br>carbide sharing<br>engine<br>cooling<br>system                                                                                                  | AC power<br>distribution<br>system                                              | temperature<br>Silicon<br>(not Si Carbide)                                                                                                              | tors at Super conductors                                                                      | 5                                                                                                            |
| Control &<br>interfaces     | Journey models<br>(accurate, range of<br>journey types, etc.)<br>Reduced complexity<br>driver information<br>systems (e.g. voice<br>recognition)                                                                 | Journey predictor<br>for adaptive control Inl<br>co                                                                                                                 | tegrated<br>Introl (engine,<br>ansmission, &<br>/brid systems)                  | Vehicle-to-<br>vehicle radio<br>links infrastructure (n<br>Low cost Low cost, low<br>(multiplex range RF controllers<br>systems) - wireless car (signal | regional / national<br>models) control infrastructure<br>Neural networks<br>(faster real-time | Full control of<br>vehicle systems<br>via intelligent<br>systems<br>Driver-less car<br>? (congestion control |
| Novel                       | CVT (continuous                                                                                                                                                                                                  | Capacitors                                                                                                                                                          |                                                                                 |                                                                                                                                                         |                                                                                               |                                                                                                              |
| transmission<br>concepts &  | variable transmission)<br>- clutchless                                                                                                                                                                           | (high temperature,<br>lower volume,<br>lower cost)                                                                                                                  | All electric<br>braking                                                         |                                                                                                                                                         |                                                                                               |                                                                                                              |
| auxiliary<br>systems        | Fully integrated<br>electric drive                                                                                                                                                                               | Auxiliary power<br>suppliers/drivers                                                                                                                                |                                                                                 |                                                                                                                                                         |                                                                                               |                                                                                                              |

| Hybrid, electric a                                                      | and alternati                       | ively fuelle                        | d vehicle technology                       | (HEAFV)                                         |                                                                  | Conventional / a                                                      | Iternative fuel                                                     |
|-------------------------------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|
| 20                                                                      | 02                                  | 20                                  | 07                                         | 2012                                            | 2017                                                             | 20                                                                    | 22 2032                                                             |
| Petrol                                                                  |                                     |                                     |                                            | Not suitable<br>for reforming<br>(in long-term) | Fuel<br>production<br>peaks ???<br>(2015-2050>                   | Need for rare<br>earth metals/<br>catalysts<br>- disposal &<br>supply | Supply vs. demand<br>Supply shortage<br>pushes up prices<br>& costs |
| Diesel<br>Ultra-fine particles<br>- health                              |                                     | 2005:<br>Ultra-low<br>Sulphur (ULS) |                                            |                                                 |                                                                  |                                                                       | IC engine<br>still used till<br>2050 for HGVs                       |
| LPG<br>Basic infrastructure<br>in place (LPG,<br>petrol, diesel)        | Need for standards                  |                                     |                                            |                                                 |                                                                  |                                                                       |                                                                     |
| CNG<br>NG infrastructure<br>needs compressors                           | (LPG & NG)                          |                                     | Advantage of<br>LPG / NG diminishes        |                                                 |                                                                  |                                                                       |                                                                     |
| LNG specialist process                                                  |                                     |                                     |                                            |                                                 |                                                                  |                                                                       | LNG still needed for HGVs ?                                         |
| Bio-diesel                                                              |                                     |                                     | 5% by 2010<br>to max of 10%<br>(no import) | Pressure on<br>land use                         | Advanced bio-fuel<br>& H <sub>2</sub> production<br>technologies |                                                                       |                                                                     |
| Bio-ethanol/<br>methanol                                                | Flexi-fuel<br>vehicles up to<br>M85 | Toxic (methanol),<br>hydrophilic    |                                            |                                                 |                                                                  |                                                                       |                                                                     |
| Gas to liquid/<br>Advanced fuels<br>(Dimethylether/<br>Dimethylmethane) | Need for<br>standards               | Consumer<br>suspicion               |                                            | Suitable for reforming                          |                                                                  |                                                                       |                                                                     |
| H <sub>2</sub><br>Storage and supply                                    |                                     |                                     | IC engine & FC<br>available in quantity    |                                                 |                                                                  | FC commercial<br>for light vehicles                                   | Significant use of renewable $\mathrm{H_2}$                         |

# 5.3 Advanced Software, Sensors, Electronics and Telematics

#### Scope

The Advanced Software, Sensors, Electronics and Telematics (ASSET) technology theme includes the following vehicle functions and systems:

- Onboard systems for road travel, vehicle and driver assistance (including electronics and sensors), information/communications and control, and high voltage electrics to support future engine systems.
- Interfaces with the road traffic specific infrastructure.

Market and industry trends and drivers that are particularly relevant to this technology theme include:

| Social        | <i>Safety.</i> Although the UK has a good record for safety, there are still around 3,500 deaths/year, and 40,000 injuries. Advanced, sophisticated systems capable of monitoring the environment and interacting with driver and vehicle control can make a major contribution to the reduction of accidents and their mitigating effects.                                                                                                                                                                                                                                                     |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | <i>Mobility (and congestion).</i> With more than 27m vehicles on UK roads and rising, congestion is increasing with consequent impact on ease of mobility. Telematics will contribute towards systems which can ease congestion through communication with the road infrastructure and via fiscal or other measures, change travel patterns.                                                                                                                                                                                                                                                    |
|               | <i>Security.</i> Vehicle crime is an escalating issue for both passenger car and commercial vehicles. Improvement to vehicle security systems are leading increasingly to persons being the target of the crime in order to gain unauthorised access to vehicles. Intelligent security systems based on driver recognition have the potential to minimise such occurrences. The potential use of vehicles in terrorist activity is a recent concern.                                                                                                                                            |
| Economic      | The adverse economic effects of congestion will benefit from ASSET technology developments. Currently, cost effectiveness of systems are difficult to justify on all except premium vehicles, therefore rapid cost reduction of critical components and widening their scope of applicability is required, allowing for migration to a wider range of vehicles and increased take-up of the technology.                                                                                                                                                                                         |
| Environmental | The requirement to reduce fuel consumption and emissions of CO <sub>2</sub> and harmful substances will benefit from more freely flowing traffic. ASSET technology for traffic flow control can help improve overall fuel consumption and has the potential to reduce local pollution build up in urban areas.                                                                                                                                                                                                                                                                                  |
| Technological | Rapidly increasing performance of information technology (electronics, software<br>and communications) is improving the likelihood of ready and extensive<br>application in vehicles. Because the technology is evolving so rapidly, matching<br>product lifecycles to vehicle evolution needs careful management. Additionally, the<br>pace of development is so fast that new possibilities become apparent continuously<br>leading to a need for continuous reassessment of future capabilities. Modular<br>manufacture and dealer configuration will aid assimilation of such developments. |

| Political       | UK Government, European and International policy concerning transport regulation and legislation has a major impact on the performance requirements of ASSET systems. These cover congestion, energy, CO <sub>2</sub> and other emissions, health and safety and waste management. There are significant implications for system integrity and reliability for use in safety related technologies.                                                                                                               |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Infrastructural | There is a growing awareness that achievement of safety and congestion goals will<br>require more than autonomous systems, dependent only upon what is available<br>within each vehicle. Effectiveness will depend upon sharing information between<br>vehicles as well as with infrastructure based information. This requires the eventual<br>emergence of a coordinated infrastructure and vehicle system development strategy<br>based on an acceptable business model for uptake of telematic technologies. |

### **Asset Technology Directions**

The expert opinion obtained during the construction of Version 1.0 of the Technology Roadmap is still relevant and valid, and is given at the end of this section for completeness. Review of this information in a workshop highlighted the following as the important themes for classification of technology directions:

- Shift from multiple hardware units central processing with a range of software
- Access and use of vehicles
- Architecture and reliability
- Human vehicle interaction
- Information management

Whilst not superseding the data obtained in Version 1.0, the information below adds to it and represents current thinking on those aspects of technology introduction which are considered important.

### Shift to Software

The general trend towards increasing use of electronics and communications technology, and software replacing hardware, is continuing and will have a major impact on vehicle design and operation, and also of the transport infrastructure. All aspects of vehicle control and travel decision support are affected. The focus is on both the constituent technologies and the system integration required to merge functions together.

| 0-5 years                                                                                                                                                                                                                                                                    | 5 – 10 years                                                                                                                                                                                                                                                            | 10 – 20 years |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Low cost adaptive cruise control (ACC)<br>Automatic emergency braking<br>Pedestrian sensors<br>Fusion of radar and vision<br>360• vehicle sensing<br>Driving development simulator<br>Lane keeping support<br>ADAS simulator for driver training<br>(Dealer, Driving School) | Interaction support system (both vehicle<br>and infrastructure based)<br>Minimum cost routing based upon<br>knowledge of (dynamic) congestion<br>charges<br>Neural network software learns driver/car<br>setup<br>Control systems enabled by highly granular<br>EIS/DBS |               |

#### Access and Use of Vehicles

Software, sensors, electronics and telematics technology lead to significant access related benefits to both vehicle and the road infrastructure. Reduction of congestion and crime, increasing mobility, accessibility and vehicle adaptability are areas expected to benefit. These will enable new models of ownership and control to be adapted, such as driver recognition, payment for road usage and insurance.

| 0-5 years                                                                                                                                                                                                                                               | 5 – 10 years                                                                                                                                                                                                                                                                                                                                                             | 10 – 20 years                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Road user charging (RUC) for trucks<br>Black box road use logging<br>Automatic parking<br>Smart card entry<br>Occupant injury tolerance sensing and<br>adaptive restraints<br>Automatic incident reporting to emergency<br>services and traffic control | Biometrics driver recognition<br>Electronic vehicle identification<br>Electronic key and driving licence to<br>reduce car crime<br>Full automation in e.g. heavy congestion,<br>urban driving<br>Vehicle only admitted on pre-allocated<br>priority routes<br>Road user charging for cars<br>Lease/rent rather than ownership if new<br>energy sources are too expensive | Intelligent speed adaptation |

#### Architecture and Reliability

Implementation of advanced electronic, software and communication technologies requires that systems can be easily integrated into the vehicle and road infrastructure.

Systems are growing in complexity and perform an increasingly mission and/or safety critical role, leading to a need for reliability and fail safe operation, whilst adaptable to particular user requirements.

| 0-5 years                                                                                                                               | 5 – 10 years                                                                                                           | 10 – 20 years                               |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Common architecture systems used by all<br>manufacturers<br>Autonomous on-board sensors only<br>Electronics with low end-of-life impact | Infrastructure/vehicle and vehicle/vehicle<br>communication<br>Effective intermodal systems<br>Safety critical support | Infrastructure/vehicle co-operative systems |

#### **Human Vehicle Interaction**

This is an additional theme to those contained in Version 1.0, due to its importance. The driving task is becoming increasingly complex, both as a result of higher traffic intensity and the proliferation of systems in the vehicle. This leads to issues of driver distraction and control impairment, which applications of advanced information and control systems need to consider. Detailed behavioural studies of drivers are highlighted as necessary so that systems can be designed to given an appropriate response. A full artificial intelligence type solution (driverless vehicle) for suitable conditions (e.g. motorway) is an ultimate target. Customer acceptance of less direct control of vehicles is needed.

| 0-5 years                              | 5 – 10 years                               | 10 – 20 years                           |
|----------------------------------------|--------------------------------------------|-----------------------------------------|
| Methods for measuring driver workloads | Dialogue management                        | Vehicle system intelligence compensates |
| Voice Technologies                     | Adaptive systems for older drivers         | for human error                         |
| Knowledge of driver "baseline" and     | Driver alertness sensing linked to vehicle | External control of vehicle speed       |
| verification                           | operation                                  | "Auto pilots" emerge                    |

Driver intent detection Exploitation of new technology options – ease of use by driver Driver workload management Novel sensors for vehicle control and position management Driving impairment monitoring Fatigue, drug and incident detection Information overload handling When does driver need less information (information overload) How to achieve customer acceptance of less direct control of the vehicle

### **Information Management**

This is an additional theme to those contained in Version 1.0, due to its importance. Communication between vehicle, driver and the road infrastructure, and the storage and processing of a wide variety of information are required to operate reliably, securely and in a timely fashion. Effective information collection, processing, display, management and interaction with vehicle control systems will become increasingly important.

| 0-5 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 – 10 years                                                                                                                             | 10 – 20 years                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Reliable traffic data with high resolution<br>key trunk routes<br>Mobile broadband internet (i.e. 802.20)<br>Multi-application communications<br>Distributed networks capability<br>Highly granular EIS DBS<br>Knowledge of info requirements (how<br>much is enough?)<br>Real-time traffic information with<br>quantitative estimates of travel time delay<br>Rational Infrastructure with correct<br>max/min speed thresholds for use<br>Co-existence and interoperability with<br>other systems | Privacy preserving information security<br>Knowledge enabled planning prediction<br>Road conditions communicated to<br>navigation system | Anti-terrorism/system sabotage prevention<br>Managed travel |

### **Technology Targets**

Technology target proposals appropriate to the ASSET group were also considered in the workshop, and these are given in the following table. They should not been seen as definitive, but rather a view on suitable targets against which progress can be audited.

|                              | 0-5 years                                                | 5 – 10 years                                                                                                                                                                                  | 10 – 20 years                                                                                                                                                                         |
|------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shift to software            | ACC cost reduced to allow it as a price option from £500 | 2m accuracy for position for 99% of UK road<br>network<br>Pedestrian sensed at 50m in all weather<br>conditions day or night                                                                  | 360° obstacle sensing on all<br>new vehicles<br>ACC 100% fitment rate                                                                                                                 |
| Access and use of vehicles   | 50% of journeys £ 100 miles take < 2hrs                  | Standardised infrastructure                                                                                                                                                                   | 95% of vehicles controlled to speed limits                                                                                                                                            |
| Architecture and reliability | High bandwidth of integrity vehicle data bus             | Zero recalls to fix software bugs<br>CALM standard achieved for DSRC and GSM                                                                                                                  |                                                                                                                                                                                       |
| Human vehicle<br>interaction |                                                          | Agreed measurement method and criteria for<br>too much distraction<br>50% of vehicles fitted with ACC as standard<br>Vulnerable Road Users detected in range<br>0-25m by 25% vehicles on road | Driver only steers vehicle with<br>speed set and controlled on<br>motorways<br>50% reduction in fatigue related<br>accidents (barrier is background<br>accident logging and accuracy) |

|                           |                                                                                                                                                                                                                              | 10% reduction in driver perception failure<br>accidents<br>Accident logging is a barrier, needs black<br>box? | 100% reduction in TWOC, car<br>theft and driving when<br>banned/uninsured<br>80% predictability of driver<br>behaviour<br>No human machine interface<br>required for vehicle control<br>(except destination) |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Information<br>management | 10Mb/s at up to 200km/h for 90%<br>population coverage in 5 years<br>The right information in the right<br>place to the right people at the right<br>time<br>Average flows for all of Motorway<br>network from PV's 15min/km | National road map including speed limits and other road data available digitally                              |                                                                                                                                                                                                              |

### **Research Priorities**

*Safety.* Although a wealth of statistics is available about accidents, there is still a shortfall in details. Accident knowledge is required to inform how better to design systems for prevention. It can build upon similar work on how incidents are occurring but a specific understanding of the special circumstances pertaining to the UK context is also required. Despite the concern over driver distraction and the increasing complexity of the driving task, there is still insufficient knowledge in this area. Models are required for driver distraction and cognitive loading that can be used in the design and evaluation of new interfaces and driving support aids.

*Cost of technology.* The cost of ASSET based systems must be reduced for more widespread adoption other than in top-of-range premium vehicles. In some cases, there is a careful cost versus functionality balance to be sought that requires further investigation to accomplish. Additionally, cost reductions in the enabling technologies and constituent components help to make these systems affordable to a wider market. The challenge is in engineering these high performance constituents for low cost, volume manufacture.

*System Integration.* Much of the development to date has exploited single sensors to achieve each task. However, each sensor modality has its own advantages and performance drawbacks. Sophisticated techniques in multi-sensor data fusion can yield improvements in overall system performance and reliability that are greater than can be achieved by using each sensor separately. These techniques are well understood in other domains but are under-utilised and require further study to ensure their effectiveness in vehicle applications.

*Reliability.* The increasing complexity of ASSET applications places considerable demands upon how they can be tested. Systems will also need to interact with those in other vehicles and with infrastructure components, with a set of elements that may be outside the design control of one manufacturer, leading to standardisation issues. Exacerbating the problems, systems are becoming mission if not safety critical. Ensuring than they are thus operating correctly and safely becomes of paramount importance but concomitantly more difficult. System validation presents major challenges with many technical problems to be resolved. Areas for improvement include better modelling capabilities to assure and predict performance and rapid prototyping to give early feedback on functionality.

*Technology Introduction.* Solutions are sought on how to accommodate the mismatch in life cycles between vehicles and the telematics applications that are embedded in them. Further work on standards will underpin this work, as will progress in ways in which mid-life or in-service upgrades can be made to such systems in a cost effective and simple way. Other techniques that may assist new vehicle launches to intercept the latest technology breakthroughs would also be desirable.

#### **Overview**

#### Safety

Reduction in the number of deaths and serious injury is mandated by Government Policy. The technology developments highlighted in this section will lead to reduction in the number of accidents through collision avoidance with all users of the road infrastructure. On-board sensing and deployment of safety systems during collision will help mitigate the effects of an accident.

#### Congestion

Reduction of congestion is a key policy requirement for the future of the UK road network. Information collection and use through advanced communication and driver aids will aid in the avoidance of congestion. Linkage to road user charging and route planning will help with active management of congestion.

#### Environment

Use of advanced technologies can help to control  $CO_2$  emissions and other pollutants by maintaining free flow of traffic, particularly in urban areas. Active traffic control to avoid pollution (particularly in the urban environment) is ultimately feasible using similar technologies to those used for congestion, particularly when coupled with real time measurement of vehicle emissions.

#### Security

Vehicle crime has attendant economic and personal effects. ASSET technology development has the potential to reduce vehicle crime without moving the focus of crime from the vehicle to the individual.

### **ASSET Technologies from Version 1.0**

| Advanced softw                     | are, sensors, el                                                                                                  | ectronics & telen                                                                         | natics technolo                                                               | gy (ASSET)                                      | S                                                                                  | hift to software                                                                              |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 20                                 | 02 2                                                                                                              | 2007 20                                                                                   | 012                                                                           | 20                                              | 17 20                                                                              | 022 2032                                                                                      |
| Lateral guidance /<br>control      | Video image processin<br>Inertial navigatio<br>Blind spot warnin<br>360 <sup>0</sup> sensing system<br>Integratio | g Motion control<br>s systems                                                             | Reliable & accurate<br>(cm) positioning                                       | Lane keeping                                    |                                                                                    | 110 GHz radar ?                                                                               |
| Longitudinal<br>guidance / control | Adaptive cruise control<br>(ACC)<br>GPS<br>Parking – Ultrasonic<br>Long range radar – 77GHz                       | 24 GHz Active Traffic                                                                     | 3D Sensors<br>Multi-function radar                                            | IFF<br>(messaging<br>transponders)              | Convoy driving<br>Co-operative Vehicle                                             |                                                                                               |
|                                    | ARC, RMD active Tren<br>suspension<br>Vertical motion sensors                                                     | Management<br>(ATM)<br>d: warning (lower integrity & co                                   | mfort) -> support                                                             | -> delegated control (high inte                 | Highway Systems<br>(CVHS)<br>grity, safe, high redundancy, socia                   | lly acceptable)                                                                               |
| Vehicle<br>adaptability            | Driver condition monitorin<br>Driver monitorin                                                                    |                                                                                           | Driver ability<br>monitoring<br>Infrastructure<br>electronic topology         |                                                 | "Plug and Play" Applications<br>(workable) on demand<br>Sensor enabled<br>vehicles | (CV style profile to<br>vehicle performance<br>matrix)<br>Adaptability to driver<br>behaviour |
| System<br>integration              | 5.8 GHz DSR<br>Bluetooth WFF<br>DAI<br>Single point applications                                                  | 802.20 WWAN<br>3G (GSM)<br>B Open systems<br>vehicle IT<br>platform<br>Information fusion | Sensor redundancy<br>by communication<br>between infrastructure<br>& vehicles | X - wire systems<br>Wearable technology         | Lane merge support<br>4G<br>Automated highway<br>systems<br>Transport faiure       | -infrastructure & map<br>5G<br>Full authority<br>vehicle control                              |
| Intelligence<br>& learning         | Prioritising information<br>Probe vehicles                                                                        | Sensor fusion<br>Map updating                                                             | Dynamic network management                                                    | Intelligence identification<br>(closed systems) | management<br>Vehicle "AI"                                                         |                                                                                               |

| 20                     | 002 2                                                                                                   | 007                           | 20                                                                         | )12                                                                     | 20                             | 17 20                                                                        | 022 203                        |
|------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------|--------------------------------|
| Access into<br>vehicle |                                                                                                         | Bio-metrics pha               | se 1                                                                       | e-Licence                                                               | Bio-metrics phase 2            | Fit to drive detection                                                       | Crime reduction & safety       |
|                        |                                                                                                         |                               |                                                                            | Tuned vehicle<br>performance<br>- driver adaptation                     |                                |                                                                              |                                |
| Access of vehicle into |                                                                                                         | Clear Zones<br>Access to PSVs | s/ home / car parks<br>Access by HGVs<br>(e.g. height)                     |                                                                         |                                | Driver based vehicle<br>prioritisation (e.g.<br>elderly, disabled)           | Adapting vehicle to individual |
| Use                    |                                                                                                         | Driver workload<br>management | Black box                                                                  |                                                                         |                                | Tuned vehicle<br>performance<br>- infrastructure / fuel<br>/ environment     |                                |
| use                    |                                                                                                         |                               | technology<br>Road User Charging<br>Use-based<br>insurance                 | Intelligent Speed<br>Adaptation<br>Advisory system<br>economical drivin |                                | Interaction with                                                             |                                |
|                        | Adaptive cruise control<br>(ACC)                                                                        | Stop & go                     | Stop & go ++                                                               |                                                                         | Urban Drive<br>Assistant (UDA) | Rural Drive Assistant<br>(RDA)                                               | Automated<br>highway driving   |
| Crime reduction        | Technologies exist, but<br>time to implementation?<br>(politics, standards, public,<br>insurance, etc.) |                               | Electronic Vehicle<br>Identification (EVI)<br>as a theft<br>countermeasure |                                                                         | Vehicle fingerprinting         | Vehicle subsystem<br>identification Remote vehicle<br>control for anti-theft |                                |

| 2                                         | 002 20                                                                                                                                 | 07                                                                             | 2012                                                                                 | 20             | 17 20                                                                         | 2032 2032                                     |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------|-----------------------------------------------|
|                                           | Intuitive<br>Undemanding                                                                                                               |                                                                                | Self-diagnostic                                                                      | Reconfigurable | Human fault<br>tolerant                                                       | Worry free motoring<br>Self-repairing vehicle |
| Sensors for<br>self diagnostic<br>systems | Sensors with a common<br>architecture for diagnostics<br>Software-based<br>diagnostics (i.e software<br>functionality OK)<br>Adaptive? |                                                                                | On-board maintenance diagnostics                                                     | Al-based       |                                                                               |                                               |
| Architecture<br>to "enable"               | Improved simulation<br>for faster development                                                                                          | Battery / power<br>management<br>Modular &<br>standards-based<br>architectures | 'Plug & Play<br>architectures<br>Control<br>flexibility (to aid in<br>manufacturing) | Standards      | Design for<br>disassembly<br>- Interchangeability<br>- component<br>- upgrade | Tailor made<br>"morphing" vehicle             |

### 5.4 Advanced Structures and Materials

#### Scope

The Advanced Structures and Materials (FASMAT) technology theme includes the following vehicle functions and systems:

- Supporting structure (body) which is an integral part of many other systems and features of the vehicle, such as style, glazing, heating and airflow systems.
- Structural components, including suspension, hard and soft trim.

Market and industry trends and drivers that are particularly relevant to this technology theme include:

Social Safety. As well as continuing efforts to reduce the number of road traffic accidents, vehicles must be designed and constructed in a manner which mitigates the effect of an accident both on vehicle occupants and those external to it. Materials and structures development is a key enabler contributing to this driver. Not only is the behaviour of materials in crash conditions important, but combining them into smart structures with tuneable, active safety systems has scope for development.

*Configurability.* Freedom of customer choice is leading towards a greater number of vehicle styles and rapidly evolving models, with fashion being a driver for vehicle change. Materials and structure developments will give better targeted products, through product configurability and flexibility, with attendant opportunities to reduce investment costs and time to market.

- *Economic* Competitive pressures to reduce development and manufacturing cycle times and costs in the drive for greater profitability and return on capital is leading to requirements for highly modular structures applicable over a wide range of platforms. An additional requirement is the need for low investment vehicle/low volume programmes. The development of more cost effective materials and coatings are needed to maintain and improve profitability.
- *Environmental Waste management.* The European Directive on End-of-Life Vehicle and similar legislation requires continuing improvement to the ability to re-use and recycle materials, and the number of substances proscribed against use is growing. This acts as a constraint on the take-up and use of new materials, which will need to be vetted for compliance with legislation. Increasing consideration will be given to the environmental impact of all substances used and management "from cradle to grave". This in turn leads to the need for design for re-use and recycling, with the attendant dismantling issues. The use of polymeric materials, which can offer distinct advantages structurally, will need special consideration.

*Emissions reduction.* The need for reduced CO<sub>2</sub> and pollutant emissions is assisted by the development of lightweight materials and structures, leading to lower energy needs for propulsion. Hybrid and fuel cell vehicles will benefit particularly from materials and structure development for optimisation of the vehicle architecture. *Manufacturing.* Materials and coatings developments are required which are environmentally friendly in manufacturing processes.

- *Technological* Developments in new materials, such as composites, polymers, lightweight alloys, smart materials and associated design and processing methods, together with competition to develop innovative structures and materials to improve vehicle performance in terms of weight, stiffness, safety, responsiveness, fuel efficiency, configurability and environmental impact.
- *Political* UK Government, European and international policy, regulations and legislation concerning transport, energy, CO<sub>2</sub>, safety and waste management requires the application and development of suitable materials and structures. FASMAT can contribute to requirements to reduce the number of fatalities and serious accidents, and improve the environment by enabling re-use and recycling.
- *Infrastructural* Developments in the infrastructure that affect safety (telematics and physical infrastructure) require suitable materials and structures for deployment.

### **FASMAT Technology Directions**

The expert opinion obtained during the construction of Version 1.0 of the Technology Roadmap is still relevant and valid, and is given at the end of this section for completeness. Review of this information in a workshop highlighted the following as the important themes for classification of technology directions:

- Safety
- Product configurability/flexibility
- Economics
- Environment
- Manufacturing systems

Whilst not superseding the data obtained in Version 1.0, the information below adds to it and represents current thinking on those aspects of technology introduction which are considered important.

#### Safety

The UK Government is committed to targets for 2010 of reducing deaths and serious injuries from road traffic accidents to 40% of the 1994 to 1998 average levels. Development of materials and structures which are effective in mitigating the effects of accidents to both those inside and external to the vehicle is seen as one of the enablers to achieving the target, in conjunction with measures aimed at reducing the likelihood or severity of accidents (see also the ASSET technology theme). A combination of passive and active safety systems are required, taking into account forecasts of future mobility requirements and vehicle types.

| 0-5 years                                                                                                                                                                                                                                                                   | 5-10 years                                                                                                                                                                                                                                                                                               | 10 – 20 years                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Increased concentration on the engineering<br>and material choice<br>Active safety systems begin to appear. New<br>standards and assessment on how to test<br>More widespread use of UHSS steels<br>(e.g. TRIP) in auto structures - better<br>energy absorption in crashes | Most vehicles have active safety systems to<br>agreed standards but differing across<br>regions<br>Smaller, lighter cars drive safety standards<br>Materials of structures work matched with<br>joining technologies development<br>Smart compliant structures<br>On board system performance monitoring | Harmonised active and passive safety<br>standards<br>Flimsy vehicles for (only) urban operation |

### **Product Configurability and Flexibility**

A growing demand for greater product variety is anticipated to meet consumer requirements in terms of lifestyles and demographics. This is reflected in the trend towards greater configurability and flexibility, with modularisation being important in providing multi-platform capability in parallel with the reduction of manufacturing costs and development time.

| 0-5 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 – 10 years                                                                                                                                    | 10 – 20 years                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Modularisation<br>Multi-function structures - integrated<br>electronics, switchable pigments etc<br>More integration into component design<br>Aim to develop multiple body<br>configurations on single platform basis<br>foolproofing for user changeover<br>Design and simulation tools required,<br>e.g. for durability, fatigue etc<br>New and developed materials require cost-<br>effective structural joining processes<br>Design for manufacture to incorporate new<br>technology benefits at an earlier stage of<br>project | Short term reconfiguration (leisure use etc)<br>Long life vehicles<br>Re-manufacture/refurbishment of<br>suitable/rare material intensive parts | Upgradeable vehicles to reduce waste<br>Integral noise dampening |

### **Economics**

Structural systems and materials form a significant proportion of vehicle cost, in terms of raw materials, production, and disposal and recycling costs. Advances in materials technology, and the associated design and manufacturing processes, also provide significant potential for enhancing vehicle performance and adding value. The economics associated with structures and materials need to be considered in terms of the full vehicle lifecycle: design, manufacture (including the tradeoffs between volume and cost of production), re-use and recycling.

| 0-5 years                                                                                                                                         | 5-10 years               | 10 – 20 years                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------|
| Increased common<br>platform/component/system sharing - cost<br>down<br>Develop cheaper, more 'manufacturable'<br>low weight structural materials | Elimination of paintshop | Upgradeable vehicles to reduce waste<br>Integral noise dampening |

### Environment

Suitable material development is key to achieving the reduction of environmental impact of vehicles, particularly at end-of-life, where targets for re-use and recycle are set by European Directives. The list of substances prohibited either for their environmental impact or direct health effects is ever increasing, such that all materials developed for use in vehicle manufacture need auditing for suitability at the outset. Consideration of needs for re-use and recycling requires a systems approach for "cradle to grave" component management, including design for disassembly and reprocessing. Polymeric materials in particular need consideration for this purpose. The environmental effect of processes also impacts materials, with a challenge for materials that can reduce or eliminate processes with a high environmental impact having costly control needs, such as paintshops.

| 0-5 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 – 10 years                                                                                                                                                                                                                                                                                                                                                                                                   | 10 – 20 years |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Life cycle issues closely adhered to<br>Low cost integration of lightweight<br>composites into commercial sector<br>(bodywork)<br>Environment on the next NCAP<br>Provide low cost alternatives to surface<br>treatments which are now prohibited<br>Challenges for EoLrecycling will require<br>single piece as opposed to multi-piece<br>assemblies<br>Low cost manufacturing of large,<br>lightweight commercial vehicle chassis<br>Structural materials contribute to noise<br>reduction<br>Enable repair techniques for UHSS,<br>aluminium and other low weight structural<br>materials | Emphasis on re-use rather than recycling<br>for key components, with appropriate<br>systems in place<br>Improved high strength lightweight<br>structures<br>Magnesium alloys used in a wider range of<br>applications for weight and dampening<br>(powertrain, A and B pillars)<br>Design to withstand damaged roads<br>Weight saving emphasis in parallel with<br>take-up of new fuels, fuel cell, hybrid etc |               |

### **Manufacturing Systems**

Development of suitable manufacturing systems to design, join, and assemble vehicles in a shorter timescale is driven by the needs for a competitive industry giving suitable profitability. Linked to this are the needs for modularisation associated with product configurability and flexibility, as well as the demands for easy disassembly for re-use and recycling at end-of-life, together with systems suitable to unlock the potential of newly developed materials and structures.

| 0-5 years                                                                                                                                                                                                                                                                                                                                                                         | 5 – 10 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 – 20 years                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design for dismantling<br>Modularisation<br>Component re-use<br>Off-line virtual prototyping<br>Manufacturing to order<br>Shared production facilities between<br>OEM's to equalise production rates as<br>customer demand varies<br>Initial appearance of low volume vehicles<br>with some elements of mass customisation<br>Reductions in product development time to<br>market | Wider use of magnesium and its alloys as<br>the understanding of material and<br>techniques increases<br>Alternative material/coating combinations<br>to make paint shop redundant for corrosion<br>and cosmetics<br>Manufacturing process simulation tools to<br>avoid expensive surprises (and data to<br>enable them to work)<br>Product updating<br>Contract assembly infrastructure<br>Cost model for production methods change<br>Ease of repair to damaged vehicles<br>New materials and structures developed for<br>low volume products | Only very large volume vehicles use<br>"Budd" type assembly. These will be<br>customer configurable and possibly<br>modular<br>Lower volume vehicle using low<br>investment techniques - will be<br>customisable and modular (including<br>electrical system, A/C ducting etc in<br>structure)<br>Micro factories<br>Flat pack |

### **Technology Targets**

Technology target proposals appropriate to the FASMAT group were also considered in the workshop, and these are given in the following table. They should not been seen as definitive, but rather a view on suitable targets against which progress can be audited.

|                                               | 0-5 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 – 10 years                                                                                                                                                                                                                                                                                                             | 10 – 20 years                                                                                                                                                                  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Safety                                        | Selection of joining systems to match<br>material performance capabilities e.g.<br>energy absorption, stiffness, strength etc                                                                                                                                                                                                                                                                                                                                                                                                                | Design/production and validation of<br>"smart" crash structures                                                                                                                                                                                                                                                          |                                                                                                                                                                                |
| Product<br>configurability<br>and flexibility | Component integration<br>Easier separation of materials for recycling<br>or re-use<br>Effect of modular structures (and joining)<br>on crash structures/NVH/stiffness<br>Robust engineering solutions for rapid<br>modular reconfiguration                                                                                                                                                                                                                                                                                                   | Automotive industry relevant materials<br>information database with all needs<br>covered - one source<br>Management of customer<br>customisation and effect on design<br>process/homologation and supply<br>chain                                                                                                        |                                                                                                                                                                                |
| Economics                                     | Reduce cost of moulded composites<br>Component performance beyond single<br>vehicle life<br>Development costs<br>Re-processing of metal mixtures to give<br>pure metals for re-use<br>A higher, safer and more environmentally<br>sound vehicle development                                                                                                                                                                                                                                                                                  | Disassembly techniques<br>Develop viable alternative to<br>traditional paint finish for body panels                                                                                                                                                                                                                      |                                                                                                                                                                                |
| Environment                                   | Establish standards for environmental<br>friendliness<br>Development of polymer separation<br>techniques<br>ELV compliant composite materials<br>Reduce vehicle weight<br>Attachment strategies for dismantling<br>Wider understanding of materials in the<br>industry<br>Overcoming energy saving vs. recycling<br>perceptions<br>Development of disbondable<br>metal/composite interfaces<br>National system for reuse of components<br>Low cost CFRPpanels and structures                                                                 | New magnetic materials for<br>hybrid/fuel cell powertrain<br>Develop re-use<br>mechanisms/methodologies<br>Identify higher value markets for<br>recovered materials<br>National systems for material re-use<br>and recycle                                                                                               | Solve H <sub>2</sub> fuel infrastructure<br>issues to enable widespread<br>uptake and use<br>Hardwearing, low friction<br>coatings to eliminate lubricants<br>from powertrains |
| Manufacturing<br>systems                      | Joining hybrid structures<br>Surface quality thermoplastic composites<br>Develop low cost composite manufacturing<br>process<br>Cost effective joining/dismantling of mixed<br>material structures<br>Cheap, environmentally friendly system to<br>join steel, aluminium and magnesium<br>without corrosion issues<br>Awareness of and access to process cost<br>models and Life Cycle Analysis<br>Establish central register of production<br>routes to advise on potential facility<br>sharing<br>Single piece structure development costs | Coatings which survive production<br>Reduce time to manufacture for novel<br>technologies<br>Materials that do not require paint<br>protection<br>Convergence of business and<br>technology research models<br>Flat pack/modularity requires ability to<br>make cheaply, structural, sealed joints<br>post-paint process | Die-less forming                                                                                                                                                               |

### **Research Priorities**

Key materials and structures technologies for development are expected to include the following:-

Low investment, short cycle time, single sided access joining technologies for metallic and composite materials and having an inbuilt process monitor/validation mechanism e.g. riveting processes that set the rivet, applying suitable process monitoring and non destrucive testing (NDT) strategies in cycle will enable automatic capture of the quality record for that specific assembly.

Predictive simulation of plastics, composites and foams under high strain rate conditions e.g. a prediction mechanism for foams would allow optimisation of energy absorption rates under impact conditions to protect the contents of the packaging or modify the response of the product or assembly that the foams forms a part of.

Low investment, environmentally acceptable corrosion resistant pre treatments for light metals (e.g. aluminium and magnesium) that would be suitable for low volume batch suppliers.

Medium and high volume techniques for the manufacture of low weight structural composite components and hybrid structural joining techniques to enable their use in predominantly metallic structures.

Robust manufacturing processes to enable the production of recyclable components and assemblies with structural, cosmetic and electrical/electronic functions integrated.

Low volume modular manufacturing techniques.

#### **Overview**

The technologies covered by the FASMAT Thematic Group will make a significant contribution to the following major drivers for the vehicle sector.

#### Safety

Reduction in the number of deaths and serious injury is mandated by Government Policy. The technology developments highlighted in this section will lead to reduction in the effect of accidents by the use of materials and structures better able to mitigate the effects of road traffic accidents to all those involved.

#### Environment

Waste. UK and European legislation on waste management and control, such as the European End-of-Life Vehicle Directive, already places restrictions on the use and development of materials. The proportion of reuseable and recycled components in vehicles has to increase, and design for disassembly becomes important. Environmental management of materials, structures and components is required from concept to end-of-life.

Emissions. The UK is committed to international protocols targeting significant reduction in the emission of greenhouse gasses such as  $CO_2$  to combat the perceived threat of global warming and its consequences. The development and use of lightweight materials and structures is a key enabler for reducing the energy requirements for the propulsion of vehicles. Also, advances in materials and coating technologies will aid friction reduction, leading to improved efficiencies.

#### Economic

With industry facing major economic challenges, the need to improve profitability and achieve better returns on investment is highly important. Developments in materials and structures could enable the introduction of highly modular, flexible platforms. They may also contribute to low investment manufacturing systems for low volume production.

#### **Customer** Choice

The techniques and technologies covered in the section will allow more customer choice through their impact on modular structures capable of use over a wide range of vehicle platforms.

### **FASMAT** Technologies from Version 1.0

#### Advanced structures and materials technology (FASMAT) Safetv 2002 2007 2012 2017 2022 2032 Clients for safety: 10-20 year more leisure travel Future trends (10 years +) -10 year - in vehicle Scenario: will telework reduce more motorcycles / powered 2 wheelers? scenario other vehicles - more radical 'business reduce business - increased cycling in more segregated areas - pedestrians and cyclists travel? as usual' - pedestrian segregation - increased Park & Ride Current users: Passive safety - more car journeys but fewer urban journeys - cars - buses - vehicles increasing truck usage increase of urban bus / truck infrastructure - trucks (vehicles and pedestrian) cvcles Urban speed decreasing motorcycles Active safety Rural speed unchanged pedestrians - vehicles Motorway speed unchanged - infrastructure Key issues Generic issues: More powered More pedal cycles: Segregation & safety Truck hitting other active safety systems 2 wheel vehicles - better visibility legacy vehicles infrastructure vehicles (active & (telematics facilitates) side impact passive safety) Park & Ride safety Radar for location smart crash materials & more realistic protection truck design for (e.g. bus safety) (cyclists & others) structural design crash & accident pedestrians & other segregation (bus & truck) tests (impact & fire) reflective materials More short rural journeys . vehicles segregation & for bike & rider - modelling of material Pedestrian (cold engine & tyres) active safety for infrastructure and structural Safety cells on bike & - bus design for segregation: - ER materials pedestrians (architecture) (bus and truck) rider - light and strong pedestrian safety performance flammability smart crash materials motorcycle materials - materials and Fewer urban journeys School run safety (design for safe Motorcycle design structures for Bus design for active tyre pressure safety Emissions: structures & materials (3 wheelers? / airbags) pedestrian safety manufacturing systems Park & Ride - school infrastructure which are efficient) Safety of impacted car free zones - engine & powertrain Safety for passengers Working in the car - barriers between - training vehicle - bus passenger safety (mobile phone / laptop) roads and paths segregation of user clusters (weight and Electro rheological Pedestrian safety against Voice systems (ER) materials voice activated systems coach / bus speed) - permits - inflatable materials (& deactivated) Coach vs. car impact optimisation of all Lane segregation Speed limiters vehicle classes - bus design for frontal & Paving materials side impact / roll-over Door opening inhibitor - lane highlighting Lane segregation while being undertaken Road obstacles overtaking system (third party)

#### Advanced structures and materials technology (FASMAT)

Product configurability / flexibility

| 20                                                                                                                                                                     | )02                                                                                                                       | 2007                                                                                           | 20                                                                                                            | 12 20                                                                                                                                                                                 | 017                                                                                                               | 2022                                 | 2032 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------|------|
| Pre-configure<br>model /<br>Mix & match                                                                                                                                | Material mix<br>Joining<br>technologies:<br>- adhesives<br>- hybrid<br>- mechanical<br>- fusion<br>- friction welded      | Space frame<br>Design<br>techniques<br>- validation<br>- simulation<br>Coating<br>technologies | Recycling systems<br>(identification /<br>separation)<br>Corrosion (durability)<br>Turn on / off<br>adhesives | 3-year re-configuration<br>option<br>Chassis:<br>- main structure<br>- varied body<br>High strength /<br>lightweight materials<br>One chassis, snap on<br>body module                 | Configuration at<br>dealer<br>Power options<br>- combustion<br>- fuel cell<br>Turn on / off<br>joining techniques | 'Low skill'<br>joining<br>technology |      |
| Design to suit<br>customer<br>- Iderly population<br>- Increasing income<br>- Increasing income<br>- Increasing leisure<br>- Increasing leisure<br>- Increasing travel | JIT modular<br>assembly<br>Product mix<br>varied<br>Platform based<br>vehicle mix<br>Pick & mix<br>equipment<br>interiors |                                                                                                | Lightweight<br>hang-on parts<br>Repair issues:<br>- ease of repair<br>- location cost                         | Pick and mix<br>module<br>Low cost tooling /<br>flexible tooling<br>Low investment<br>(affordable) process<br>Low cost<br>dimension<br>change (e.g<br>extrusion cu,<br>short or long) | External desig<br>by customer<br>(variety vs. co                                                                  |                                      |      |

|             | ctures and materi                                                           | 007                                                                                     | . ,                                                                                                          | 12                       | 20                    | 17                                                | 20                                                                                                                           | 22 2032                                                                                                                                       |
|-------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Design      |                                                                             | design knowledge                                                                        | Same energy<br>absorbing properties<br>from lighter weight<br>als % reduction in<br>weight (safety<br>issue) | add-on panels)           |                       |                                                   |                                                                                                                              |                                                                                                                                               |
| Manufacture |                                                                             | Flexible Pre coate<br>manufacturing<br>(able to make<br>wide range of<br>model options) | cost, to suit<br>& low volume                                                                                | Self color<br>(no over ) | 0.                    | Moulded<br>body (no<br>assembly)                  | Reduced composite<br>material cost allows<br>cheaper volume<br>manufactured<br>composite<br>structures (stiffer,<br>lighter) | Process for use of<br>lighter materials<br>(e.g. titanium) in<br>conventional<br>production methods                                           |
| Cost        | Tailored tubes                                                              | New materials /<br>processes<br>(infrastructure &<br>capital cost of entry)             | Longer life<br>for higher<br>residual value<br>& selling on /<br>down                                        | Part integ               | ration & self-colour) | F1 material<br>performance<br>at cheaper<br>price | Development of<br>nano-composites /<br>exotic materials                                                                      | Standardisation<br>of safety regulations<br>(particularly crash)<br>Lifecycle cost<br>(cost of ownership)<br>Polytronics<br>Reduce whole life |
| Volume      |                                                                             | Capital<br>recovery                                                                     |                                                                                                              | Cost of adding style     |                       |                                                   |                                                                                                                              | cost by %<br>Lifecycle cost<br>(wider stakeholder<br>consideration –                                                                          |
| Use         | Road surface materials<br>(friction / rolling resistance /<br>grip / noise) | glass (weight?,<br>thermal?)                                                            | Easy to repair or<br>replace (low cost)<br>Reduction in cost of<br>bodywork repairs                          |                          |                       |                                                   |                                                                                                                              | make to recycle)                                                                                                                              |
| Recycling   | Energy used in recovering material                                          | Identifying<br>scrap material<br>(how to sort?)                                         |                                                                                                              |                          |                       |                                                   |                                                                                                                              | 100 % recyclable<br>composites                                                                                                                |

#### Advanced structures and materials technology (FASMAT)

#### Environment

| 20                                                                   | 02 2                                                                                                  | 007 20                                                                                                                                                                               | 012 20                                                                                                                                                              | 17 20                                                                                                                    | 22 2032                                                                                                                                           |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Recycling & end<br>of life vehicles                                  | Now:<br>- 80% recycle<br>- 20% landfill                                                               | ELV target:<br>- 85% recycle<br>- 15% landfill                                                                                                                                       | ELV target:<br>- 95% recycle<br>- 5% landfill                                                                                                                       | ELV target:<br>- 100 % recycle<br>(for composites<br>and electronics)                                                    | All materials able to be<br>identified, separated, &<br>re-used (different use okay).<br>Process financially viable<br>within possible levy costs |
|                                                                      |                                                                                                       |                                                                                                                                                                                      |                                                                                                                                                                     |                                                                                                                          | Cosmetic / colour either<br>part of parent material or<br>able to be disassembled                                                                 |
| Sustainable<br>materials                                             | Flax / hemp Lifecycle<br>reinforcements analysis<br>- experimental tools exis<br>(DC close to to give |                                                                                                                                                                                      | Create useful, financially viable,<br>sustainable materials with defined<br>automotive application<br>Decomposition on demand?<br>(note variation in operating      |                                                                                                                          | Glues / sealants<br>easily disassembled for<br>are no longer required                                                                             |
|                                                                      | serial right<br>production) answer                                                                    |                                                                                                                                                                                      | Body structure materials Roads that that provide approximately absorb air &                                                                                         |                                                                                                                          | Total structure = 50% of<br>1990 technology steel<br>body                                                                                         |
| Emissions &<br>vehicle weight                                        | CAFE<br>32.5mpg (UK)                                                                                  | CAFE CAFE<br>39.6mpg 43.2mpg                                                                                                                                                         | 40% weight reduction noise pollution<br>- cosmetics as good as current (improve fuel<br>- no worse piece cost economy<br>- applicable from 20 to 250kpa to vehicle) |                                                                                                                          | Technology to:<br>- meet legislation<br>- meet customer<br>& economic needs                                                                       |
|                                                                      |                                                                                                       |                                                                                                                                                                                      | Nano particles as a means of optimising<br>material properties, design rules & technology                                                                           |                                                                                                                          | Zero emission vehicle not<br>necessary or practical                                                                                               |
| Manufacturing<br>health & safety<br>emissions and<br>post production | Non gassing<br>plastic / rubber<br>components<br>(emissions &<br>legislation)<br>- post-production    | Radiation curing of polymers<br>(low temperature, fast,<br>no emissions, no solvent)<br>Low temperature processing<br>of internal mouldings<br>- elimination of secondary processing | Solvent free production<br>No hazardous materials<br>in vehicle assembly or<br>recycling                                                                            | Materials for comfort<br>(with increasing<br>age / infirmity)<br>'Delight' materials<br>(feels good to<br>tactile sense) | Environmentally<br>neutral factory                                                                                                                |
| Safety (occupant,<br>pedestrian, and<br>other road users)            | Air quality<br>in cars                                                                                | Ultra strong occupant cell<br>Interior of vehicle is all self-<br>extinguishing for non-toxic<br>or non-flaming (occupant<br>survival cell)                                          | High / clever energy absorption<br>materials (i.e. multi-modules, crash<br>responsive)<br>Crash barriers to meet<br>all road user needs                             |                                                                                                                          |                                                                                                                                                   |

## 5.5 Design and Manufacturing Processes

#### Scope

The Design and Manufacturing Processes (DMaP) technology theme is broad, covering the full life cycle of road vehicles, with strong links to the other technology themes:

- Design, engineering, prototyping, manufacturing, assembly, use and recycling/regeneration.
- Other business processes, including supply chain management, marketing, logistics, distribution and retail.

Market and industry trends and drivers that are particularly relevant to this technology theme include:

| Social        | There is a demand for greater mobility and changing patterns of working and living, together with demographic changes. For passenger cars, customers are demanding tailor made features leading to a great diversity of models and ranges, requiring fully flexible on-demand manufacture. Vehicles which can evolve and change configuration to meet changing fashion and lifestyle.                                                                                                                  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Economic      | Competitive pressures exist to reduce development and manufacturing cycle times<br>and costs, improve value and improve responsiveness, agility, flexibility, durability,<br>efficiency and quality, in order to achieve greater profitability and return on capital,<br>together with changes to industry structure (consolidation, globalisation, supply<br>chain, etc). Low volume and fully flexible manufacturing systems are required,<br>driven by manufacture to order with minimal inventory. |
| Environmental | Requirements are to reduce energy consumption, material waste and emissions of CO <sub>2</sub> and other harmful substances, during manufacture and use of vehicles. Management of the complete vehicle life cycle from cradle to grave is required to conform to legislative requirements on waste disposal. Vehicles and components need to be designed with re-use and recycle in mind, and with manufacturing processes which are environmentally friendly.                                        |
| Technological | Competition exists to develop innovative solutions in the areas of vehicle design<br>and manufacture, considering all aspects of the vehicle life cycle.                                                                                                                                                                                                                                                                                                                                               |

#### **DMaP Technology Directions**

The expert opinion obtained during the construction of Version 1.0 of the Technology Roadmap is still relevant and valid, and is given at the end of this section for completeness. Review of this information confirmed the themes for classification of technology directions:

- Lifecycle
- Manufacturing
- Integration

Whilst not superseding the data obtained in Version 1.0, the information below adds to it and represents current thinking on those aspects of technology introduction which are considered important.

#### Lifecycle

The development of sustainable road transport, in terms of meeting social, economic and environmental needs, requires consideration of the full life cycle of vehicles, including design, production, distribution, use and end-of-life (re-use, recycling and disposal). Design of components for re-use either within the vehicle sector or outside of it requires special attention, with implications for long term reliability. Methods allowing for easy disassembly at end-of-life need to be integrated into the design process. Substantial reductions in total system material and energy consumption are required, together with reduced pollution and waste, whilst at the same time increasing economic performance in a globally competitive market. There are substantial challenges involved with migrating to more sustainable modes of vehicle production and use, which will require social, economic, environmental, technological, political and infrastructural change. A range of actions will result in moderate progress towards these goals, based on evolution of existing technology and approaches. However, in the longer term there is a requirement for improved understanding of the scale and type of change required, at a system level, and the associated implications for technology, industry and society.

| 0-5 years                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 – 10 years                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 – 20 years                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electronics/telematics in selected some<br>areas of powertrain<br>Single polymer high strength structural<br>composites<br>Legislation on reliability of parts?<br>Modular Vehicle for ease of change<br>Engine recyclability<br>Life cycle issues more closely adhered to<br>Challenges for EoLrecycling will require<br>single piece as opposed to multi-piece<br>assemblies<br>Design for dismantling<br>Component re-use | PSVheavy truck powertrain<br>Target less than 2.5 years for engine<br>program<br>Full combustion prediction tools enable<br>shorter lead times and reduced cost<br>Improved measurement and statistical<br>techniques to reduce validation requirements<br>Advanced system modelling tools<br>Long life vehicles<br>Emphasis on re-use rather than recycling for<br>key components, with appropriate systems<br>in place<br>Design for road damage<br>Product updating | Single polymer high strength and<br>modulus thermoplastic composites<br>Target less than 2 years for engine<br>program<br>Upgradeable vehicles to reduce waste |

#### Manufacturing

Improved manufacturing systems are crucial for achieving the social, economic and environmental goals described above, in terms of reducing energy and material consumption, reducing emissions, and increasing efficiency and competitiveness. Aspects that require attention include component-level manufacture and assembly, system-level manufacture and organisation, management of manufacturing systems, together with commercial and market considerations. Trends towards greater vehicle variety and customisation, together with increasing rates of innovation and technology development, will demand greater flexibility and agility from manufacturing systems whilst simultaneously improving economic and environmental performance.

| Advanced SMC (continuous high<br>performance fibre reinforcement)Structural application of high performance<br>composites in conjunction with metallic<br>structures in niche and mid- volumeReduced use of high volume production<br>techniques as volumes reduce and<br>variability increasesperformance fibre reinforcement<br>increased flexibility for more niche<br>productsReconfigurable car<br>Cameleon Car (colour change switch)Upgradeable vehicles to achieve emission<br>specifications, safety and fashionNo paint shopsMaterials of structures work must be<br>matched with joining technologiesOnly very large volume vehicles use<br>"Budd" type assembly. These will be<br>customer configurable and possiblyKnowledge capture and management<br>systemssuitable/rare material intensive parts<br>Elimination of paintshopLower volume vehicle using low<br>investment techniques - will be<br>customisable and modular (including<br>electrical system, A/C ducting etc in | 0-5 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 – 10 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 – 20 years                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design for manufacture to incorporate new<br>technology benefits at an earlier stage of<br>project<br>Increased common platform sharing - cost<br>downavoid expensive surprises (and data to<br>enable them to work)Structure)Off-line virtual prototyping<br>Manufacturing to order Shared production<br>facilities between OEM's to equalise<br>production rates as customer demand varies<br>Initial appearance of low volume vehicles<br>with some elements of mass customisation<br>Reduction in product development time to<br>marketavoid expensive surprises (and data to<br>structure)structure)Micro factories                                                                                                                                                                                                                                                                                                                                                                       | performance fibre reinforcement)<br>Class A thermoplastic with high<br>performance fibre reinforcement<br>increased flexibility for more niche<br>products<br>No paint shops<br>Modular build<br>Light weight vehicle<br>Knowledge capture and management<br>systems<br>New and developed materials require cost-<br>effective structural joining processes<br>Design for manufacture to incorporate new<br>technology benefits at an earlier stage of<br>project<br>Increased common platform sharing - cost<br>down<br>Off-line virtual prototyping<br>Manufacturing to order Shared production<br>facilities between OEM's to equalise<br>production rates as customer demand varies<br>Initial appearance of low volume vehicles<br>with some elements of mass customisation<br>Reduction in product development time to | composites in conjunction with metallic<br>structures in niche and mid- volume<br>Reconfigurable car<br>Cameleon Car (colour change switch)<br>Materials of structures work must be<br>matched with joining technologies<br>development<br>Re-manufacture/refurbishment of<br>suitable/rare material intensive parts<br>Elimination of paintshop<br>Modelling of whole vehicle system<br>Manufacturing process simulation tools to<br>avoid expensive surprises (and data to | techniques as volumes reduce and<br>variability increases<br>Upgradeable vehicles to achieve emission<br>specifications, safety and fashion<br>Only very large volume vehicles use<br>"Budd" type assembly. These will be<br>customer configurable and possibly<br>modular<br>Lower volume vehicle using low<br>investment techniques - will be<br>customisable and modular (including<br>electrical system, A/C ducting etc in<br>structure) |

#### Integration

Systems integration is crucial if significant improvements to overall life cycle performance of road vehicles are to be achieved. This includes consideration of how the various vehicle sub-systems operate together, how the vehicle is designed, manufactured and operated, and how the information and knowledge that enables these systems to function can be combined more effectively and efficiently. The challenge will be to increase the level of integration in the design, manufacture, operation and re-use of vehicle systems in parallel to rapidly advancing technology and increasing complexity (engine systems, materials, electronics, software and communications), with increasing demand for more flexibility, agility and customisation. Standards, open systems architectures and metrics will need to be established, while at the same time ensuring that creativity and innovation are not compromised. Greater co-operation and collaborative knowledge sharing will be required, without compromising competitive advantage.

| 0-5 years                                                                                                                                                                                                                                                                                                                                                                         | 5-10 years                                                                                                                                                                                                        | 10 – 20 years                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Modularisation of systems e.g. front end<br>module inc.<br>Lighting, cooling, electrical, low speed<br>crash, nvh<br>Easy parts change<br>Multi-function structures - integrated<br>electronics, switchable pigments etc<br>More integration into component design<br>Aim to develop multiple body<br>configurations on single platform basis<br>foolproofing for user changeover | Roof and/or door module including interior<br>trim, exterior panel, plastic glazing, safety<br>structure, nvh, ICE, antennae<br>Modular engines and transmissions<br>Short term reconfiguration (leisure use etc) | High investment UHSS long life vehicle<br>'tub' with lower investment multi material<br>modular subframe elements to achieve<br>product diversity |

### **Technology Targets**

Technology target proposals appropriate to the DMaP group have been considered, and these are given in the following table. They should not been seen as definitive, but rather a view on suitable targets against which progress can be audited.

|               | 0-5 years                                                                                                                                                                                                                                                                                                                                           | 5 – 10 years                                                                                                                                                                                                                                                                                                                             | 10 – 20 years                                                                |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Lifecycle     | Component performance beyond single<br>vehicle life<br>Re-processing of metal mixtures to give<br>pure metals for re-use<br>Development of polymer separation<br>techniques ELV and composite materials<br>Attachment strategies for dismantling<br>All technologies with a strong energy<br>conservation/reduced waste/reduced<br>resource element | Disassembly techniques<br>Develop re-use<br>mechanisms/methodologies<br>Identify higher value markets for<br>recovered materials<br>National systems for material re-use<br>and recycle<br>Less than 2.5 years for engine<br>Energy conservation 40% of 2005 on a<br>like for like basis<br>All products have a 90% recycling<br>element | Less than 2 years for engine<br>Long lifecycle will stifle new<br>technology |
| Manufacturing | Robust engineering solutions for rapid<br>modular reconfiguration<br>Reduce cost of moulded composites<br>Faster, safer, more environmentally sound<br>vehicle development<br>Tooling life                                                                                                                                                          | Management of customer<br>customisation and effect on design<br>process/homologation and supply<br>chain<br>Develop viable alternative to<br>traditional paint finish for body panels                                                                                                                                                    |                                                                              |
| Integration   | Component integration                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                          |                                                                              |

### **Research Priorities**

- *Near zero landfill*, for both current fleet and future vehicles, to comply with legislative targets and demands for greater social responsibility, reduce costs and to develop additional revenue streams from recycled materials. Challenges include the development of recycling technologies, establishing economically viable recycling systems with sufficient volumes of similar materials, and the identification of applications for re-use or energy conversion. System scenarios need to be developed to understand how these goals can be achieved. Design of components for re-use and design of vehicles for dismantling are particularly important.
- *Customer informed design*, to ensure that the diverse needs of customers can be met at an affordable price. The primary challenge is how to understand customer needs better (especially future and unarticulated needs) and associated requirements in terms of cost.
- *Routes to sustainable manufacture,* to reduce energy and material consumption, and to reduce emissions of pollution. Challenges include lack of knowledge and appropriate metrics for existing manufacturing systems (including supply chain) and the lack of effective strategies and methods for migrating to more sustainable production systems.
- *Low investment manufacture*, to improve flexibility. Challenges include how to improve reconfigurability, accommodate late design changes, reduce tooling costs and eliminate the need for the paint shop. Example technologies include rapid direct tooling, high speed hard machining and elimination of the paint shop (protection as well as cosmetic).

- *Electronic data exchange for design, analysis, manufacture, test and field,* to improve quality, competitiveness and customer response. Challenges include standardisation, cost reduction and the necessary change in culture required for implementation of such systems. Example technologies include virtual reality and transfer of approaches from other industry sectors (aerospace and defence).
- *Short delivery car*, enabling late vehicle configuration by dealers. Challenges include how to enable assembly near market, changes to the supply chain, data exchange, modular vehicle architectures and inventory management.
- System integration (product, process, information and knowledge), to reduce lifecycle costs, improve quality, increase product variety, improve knowledge re-use and reduce time to market. Challenges include information security and protection of intellectual property, lack of appropriate metrics and analysis tools, migration and legacy issues, and effectiveness of cross boundary/collaborative teams. Knowledge based engineering continues to form the basis for advances in this theme. Example technologies include standards and protocols, safety and security systems, automated diagnostics, electronic and software design integration.

#### **Overview**

The technologies covered by the DMaP Thematic Group will make a significant contribution to the following major drivers for the vehicle sector.

#### Environment

Re-use and recycling targets required by National, European and International legislation is driving a need for design with complete lifecycle management of materials and components. Development of designs for disassembly are required, as well as consideration of re-use opportunities with the attendant lifetime issues of components. Manufacturing processes need to be continued to be developed for new materials and structures which are compatible with the needs for environmental friendliness.

#### **Economics**

Low volume and fully flexible manufacturing systems are required, driven by manufacture to order with minimal inventory.

#### **Customer Demand**

For passenger cars, customers are demanding tailor made features leading to a great diversity of models and ranges, requiring fully flexible on-demand manufacture. Vehicles which can evolve and change configuration to meet changing fashion and lifestyle.

### **DMaP Technologies from Version 1.0**

#### Design and manufacturing process technology (DMaP) Lifecvcle 2027 2032 2002 2007 2012 2017 2022 (Design by 100% simulation ?) How does design alter in Simulation technologies: education; information gathering / research the world of global competition & internet There is a conflict: reuse Lifecycle assessment (LCA) Move to more 'full-Advanced display / increases weight, but low service-contracts'. interaction technologies: 3D. Methodology & weight reduces pollution Supply for demand What possible photorealistic, intuitive Changing retail robust / usable (reduce stock) strategies are there? Fully integrated life How to use fullystandards to be environment: How can they Built at dealer established (library Design against interactive, internet dealerships, experience cycle assessment benefit the sector in customer relationship crime (holistic -How to know what centres, internet of standards) End of life materials UK ? management (CRM) see Design users / buyers want & separation & fluid to bring customer into vehicle design? Council project) How far can 'virtual' car Communication between customer how to get it in the design ? handling replace real stock in retail and OEM, input to design Increasing use of scenarios ? How does this impact Design to enable end technology at Supply chain: What are the strategies Simulation for assessing driver of life dismantling to home? collaborative product 'needs' and 'wants' on manufacture ? / scenarios for be simple & lowdevelopment (CPD) sustainable personal energy consumption Design as differentiator ? Attitudes to extended vehicle systems ? (generating scenarios to Knowledge managemen lifecycle - 'lifestyle', 'fashion', 'sustainable' Design for diversity: When & how does new Strategy ? in CPD environment function, population, ownership / use models help us react) desire / need change car design ? Does design offer the potential to be a differentiator & win global contracts ? (how?) More than internet ? Increase accessibility to 'Lifecycle' is a new - UK as design-supplier, not cost-supplier Home high-resolution displays; area - research mobility needs to focus full scale in retail Re-use Bumpers initially on Recycle environments? re-use or new use understanding Reduce manufacturing Identify current -> find target technologies -> Flexible manufacturing systems, reconfigurable Energy in manufacturing energy energy consumption consumption Opportunities & alternative & alternative -> technologies -> Users accept different paint surface material options by 50% (2002 for energy levels)? or recovery 'No paint' or 'low paint' systems available to volume manufacturers Airborne Identify and quantify current sources Pollution in manufacturing emissions reduced of pollution (in manufacturing?) Sustainability goal: what is use (+purchase) to 5% of 2002 What is life cycle impact of servicing ? (real behaviour... e.g. substandard MOTs, oil in drains) behaviour and how can we interact with this to levels? reduce use-phase impact ? What might the strategies be to achieve near-zero landfill ? 1) for existing fleet / designs; 2) for future vehicles Pollution sources in sub-contractors, suppliers, delivery and retail

#### Design and manufacturing process technology (DMaP)

#### Manufacturing

| 20                                                                      | 002 20                                                                     | 07 20                                                     | 12                                                                                                                                                  | 2017 2                                                                                                                                     | 2022 20                                                                                           | 027                            | 2032                                                                                         |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------|
| Systems                                                                 | Modular<br>construction<br>Design for<br>disassembly                       | Rapid<br>disassembly /<br>ioining                         |                                                                                                                                                     | assembly<br>systems<br>apid prototype<br>anufacture                                                                                        |                                                                                                   |                                | Total<br>automated<br>manufacture                                                            |
| Commercial<br>& Market                                                  | Low capital costs<br>of manufacturing                                      | technology                                                | Integrated data<br>exchange (design,<br>shopfloor, dispatch,<br>distribution)<br>Volume<br>- choice of materials<br>- choice of assembly<br>methods | Lighter<br>component<br>assembly<br>Super dealers research<br>information being able to<br>visualised to the benefit<br>the manufacture r? |                                                                                                   |                                | Manufacture<br>driven by<br>the user ?<br>Sharing<br>production<br>processes –<br>evaluation |
| Partnerships for<br>capital intensive plant<br>/ process<br>development | Global /<br>regional /<br>local<br>suppliers                               | Construction<br>materials and<br>influence of<br>assembly | No paint Cha<br>shop arch<br>vehicles - cor                                                                                                         | iges in vehicle<br>tecture<br>ventional body in white<br>ce frame                                                                          |                                                                                                   | Process<br>energy<br>reduction | of data /<br>research /<br>future<br>demands                                                 |
| Management                                                              | In house disposal<br>system<br>Electronic data<br>exchange                 | processes<br>Design<br>tolerance                          | Deai<br>optic<br>Mouldable plastics –<br>fewer but complex part                                                                                     | n tools (low capital<br>costs; rapid part<br>introduction,                                                                                 |                                                                                                   |                                | Small<br>production<br>runs<br>- output<br>geared to                                         |
| Increase primary<br>stock yield<br>(metals)                             | Support for close-<br>to-form structural<br>metal components               | management<br>Heavy plant                                 | New materials<br>(e.g. composites)<br>- light weight, low                                                                                           |                                                                                                                                            | Modular vehicles<br>(with local small<br>scale configurability<br>options). New<br>reconfigurable |                                | demand<br>- markets<br>driven by<br>users ?                                                  |
| Cost effective solutions ->                                             | Reconfigurable<br>jigs                                                     | security of<br>availability<br>(customer<br>base high     | cost tooling for 42<br>efficient rapid va<br>configuration Ele                                                                                      | lves<br>ectronic systems integration                                                                                                       | manufacturing.<br>Rapid model<br>changeover                                                       |                                |                                                                                              |
| Component<br>Support and grow<br>innovative techniques<br>for UK plc    | Virtual Education & training in new manufacturing training technologies -: | Parts                                                     | cost effective networ<br>mass production of Virtual<br>advanced plant of                                                                            | ain power, with device<br>k signal / control<br>design for manufacture<br>esign and re-design – for<br>es in production methods            |                                                                                                   |                                |                                                                                              |

#### Design and manufacturing process technology (DMaP)

| Design and man                                   | 02 20                                                               |                                                         | 20                                                          |                                                                                                               | 20                                       | 17 20                                                 | 22 20                  | Integratio                                                |  |
|--------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------|------------------------|-----------------------------------------------------------|--|
| 20                                               | Recognition that<br>current systems do<br>not integrate well        | Product M<br>metrics a                                  | lake control by wire<br>cceptable (brake,<br>teering, etc.) | One vehicle structure can be 'tailored<br>software to be different 'vehicles' for<br>(youth, family, elderly) | d' via interior or                       | Role of people & automation (product)                 |                        |                                                           |  |
| Product / system<br>integration                  | Requirements<br>mediation systems                                   | Integration of al<br>(concept - engi<br>manufacture - p | l processes<br>neering –<br>post sales) into                | Understanding of product system – cost of changing any bit                                                    | Product-level<br>analysis tools          | Linking design<br>changes to<br>implications for cost |                        | Artificial<br>intelligent<br>systems will<br>allow single |  |
|                                                  | Information security                                                | integrated conc                                         | urrent design                                               | implications for -by-h                                                                                        | guration for power-<br>our for product ? | and lifecycle                                         |                        | unit<br>companies                                         |  |
|                                                  | Definition of local<br>vehicle environment                          |                                                         |                                                             |                                                                                                               | tivity & innovation                      | Common standards                                      |                        | Multi-<br>disciplinary                                    |  |
|                                                  | (needed by Tier 1)                                                  | Process model                                           | directly influencing                                        | Will 2002 processes be refined<br>(incremental change), or a                                                  |                                          | System reliability                                    |                        | integration<br>(not just                                  |  |
|                                                  | Trade-off:<br>standardisation vs.                                   | product model of                                        |                                                             | completely new approach for<br>design – prototype – specify –                                                 |                                          | Integration of human<br>and machine                   | Target:<br>minimum     | engineering)                                              |  |
| Process                                          | creativity                                                          | Process unders<br>disciplines, geo                      |                                                             | build ?<br>Understanding of                                                                                   |                                          | Scenario:                                             | economic<br>production | Scenario:<br>expertise on                                 |  |
| integration f                                    | Improved information flow as design                                 | companies)                                              | ndards for system                                           | process system &<br>interdependences                                                                          |                                          | independent<br>platforms<br>speculatively             | volume for<br>'real'   | demand<br>system                                          |  |
|                                                  | progresses<br>Design information                                    | metrics inte<br>nee                                     | gration (interaction,<br>eds)                               | Generalised information inter-working<br>across manufacture / suppliers /                                     | g                                        | developed by major<br>manufacturers                   | vehicle:<br>1000       | identifies<br>required<br>expertise and                   |  |
|                                                  | overload? Someone still needs to make it                            | Open systems<br>architecture for                        | Time<br>compression for                                     | consultants / etc.<br>Integration of embedded software                                                        | Integration                              | Role of people & automation (process)                 | (enablers)             | mediates its                                              |  |
|                                                  | work!<br>Suppliers pose and                                         | information<br>sharing                                  | design process<br>integration                               | design methods into design process                                                                            | of skills                                | Multi-dimensional                                     |                        | Information                                               |  |
|                                                  | are involved in 'what<br>if?' scenarios                             | Rules for perfor<br>of the vehicle -                    |                                                             |                                                                                                               | ation of power-by-<br>our for process ?  | optimisation (cost,<br>reliability, security)         |                        | systems (not<br>referring to                              |  |
| Information and<br>knowledge<br>integration      | Location of creativity<br>in design process<br>(and its support and | experience of e<br>Integration of in<br>downstream of   | ngineers<br>formation flow                                  | Scenario: special purpose vehicle de<br>scratch by local supplier using major<br>technology base              |                                          | Design issues for<br>integrated safety<br>systems     |                        | design<br>systems)<br>requirements                        |  |
| Integration of people,<br>process, organisation, | enabling)<br>Large scale collection<br>and garage use of on-        |                                                         | Collaborative                                               | control of convoy vehicles for                                                                                | formation overload<br>r the designer     | Communication standards                               |                        | of future<br>integrated<br>transport                      |  |
| tools and technology cut<br>across all of these  | board data                                                          |                                                         | knowledge<br>sharing                                        | (ISA)<br>ICT in Increase in autom                                                                             | ated maintenance                         | Knowledge capture<br>for integrated design            |                        | systems                                                   |  |
| themes                                           | Greater on-board<br>monitoring                                      | Data mining /                                           | Lifetime                                                    | design                                                                                                        |                                          | process                                               |                        |                                                           |  |
|                                                  | Automated diagnostic:<br>from design                                | s preventative<br>maintenance                           | diagnostics (as<br>vehicle changes)                         | Systems integr                                                                                                | ration architecture                      | Robot mechanic for<br>70% of problems                 |                        |                                                           |  |

### APPENDIX

#### **Resources, Participants and Organisations**

The roadmapping initiative was sponsored by the Society of Motor Manufacturers and Traders (SMMT). The roadmapping process was designed by Robert Phaal (Centre for Technology Management, University of Cambridge) who oversaw the project. The Foresight Vehicle Team involved in the construction of this roadmap were; Pat Selwood, Project Manager and initiator, Ian Massey, facilitator and author, and Lorna Trevethan, administration and production support.

The information contained in this report is based on a series of workshops supplemented by a web based questionnaire emailed to respondents. More than 70 experts from across the road transport industry representing more than 55 organisations were involved, including industry, academia and Government. The technology roadmap does not represent official company or Government policy, but rather individual perspectives.

This version of the roadmap draws heavily on Version 1.0, to which the reader is directed. The resources used to supplement the expert input are still relevant and are as contained in Version 1.0.

The support and participation of all those involved is gratefully acknowledged (see below), with particular thanks to the following Chairmen of the Foresight Vehicle Technology Groups: Ian Massey (Engine and Powertrain), Geoff Callow (Hybrid, Electric and Alternatively Fuelled Vehicles), Phil Pettitt (Advanced Software, Sensors, Electronics and Telematics), Mike Shergold (Advanced Structures and Materials) and Pat Selwood (Design and Manufacturing Processes). The helpful support of Nigel Davies (Chairman, Foresight Vehicle Steering Committee), Nick Barter (SMMT Foresight Vehicle), Mike Hyatt (SMMT) and Jon Maytom (DTI) is also acknowledged.

#### **Participants**

Paul Adcock, Eddie Bellringer, Hugh Blaxill, Paul Bloore, Mark Brackstone, Steve Brown, Alastair Buchanan, Geoff Callow, Simon Carter, Andrew Churchill, Nick Clare, Kevin Clinton, Adrian Cole, Barry Cole, Brian Cumming, Ceri Davies, Nigel Davies, Geoff Day, Steve Duncan, Ray Eaton, Steve Faulkner, Paul Fitchett, Richard Folkson, Mark Fowkes, Colin Garner, David Greenwood, David Gunton, Steve Harmer, John Holden, John Hollis, Graham Hollox, Nigel Hoskison, Mike Hyatt, Simon Jones, Mike Kellaway, Terry Kemp, Jon King, Nicholas Lee, Martin Maples, Ian Massey, Jon Maytom, Bill McLundie, Ken R Moore, Roy Mortier, Dan Ninan, Nick Owen, Peter Parrott, Dan Parry-Williams, Sue Panteny, Phil Pettitt, Nigel Priestley, Richard Quinn, Steve Richardson, John Richardson, Chris Rudd, Pat Selwood, Mike Shergold, Stefan Shillington, Stu Showler, Gordon Smith, Tony Spillane, Alan Stevens, Alan Thomas, Rob Thring, Ian Towle, Matthew Turner, John Turner, Roger Twiney, Lee Vousden, Alan Warburton, Alan Williams, Mike Woodcock, Graham Worsley

#### Organisations

ATL; AutoTechnium; BAE Systems; BMW; Castrol; Caterpillar; Corus; Cosworth Technology Ltd; D2 Solutions; DTI; e2vTechnologies; Euro-Projects; Faraday Advance; Faraday Plastics;

Faraday PowderMatriX; Ford; Freight Transport Association; GKN; HILTech Developments Ltd; Institute of Materials, Minerals and Mining; Intelligent Energy; Iveco Ltd; Jaguar; Land Rover; LDV Ltd; London South Bank University; Loughborough University; MEL; Meridian Technologies Inc; MG-Rover; MIRA Ltd; NAMTEC; Nissan; One North East; PDC; Powertrain Ltd; Provector Ltd; PSA Peugeot Citroen; QinetiQ; Ricardo; RoSPA, SMMT; TEC Ltd; Titanium Information Group; Toyota; Traffic Wales; TRL; TRW Automotive/Conekt; University of Central England; University of Nottingham; University of Southampton; Vauxhall Motors Ltd; Visteon; Warwick Manufacturing Group; Welsh Traffic Centre.

# NOTES

#### September 2004

Foresight Vehicle SMMT Forbes House Halkin Street London United Kingdom

www.foresightvehicle.org.uk

© Crown Copyright 2004 ISBN: 0-900685-51-4