# CO2 policies that work Myths and realities

Initial findings from a UKERC review

LowCVP Conference

23 July 2008

UKERC E4tech



### Who we are and what we do

- UKERC UK Energy Research Centre
  - Research council funded cross-university collaboration: 'preeminent UK centre of research and source of information and leadership on sustainable energy systems'
- TPA UKERC's Technology and Policy Assessment function
  - Accessible, policy relevant reports drawing upon research evidence base
- High impact on policy development and engagement with policymakers
- TPA's 4<sup>th</sup> report, but first related to transport and CO2
- Our advisors from across Whitehall and industry wanted UKERC to attend to the issues we set out below



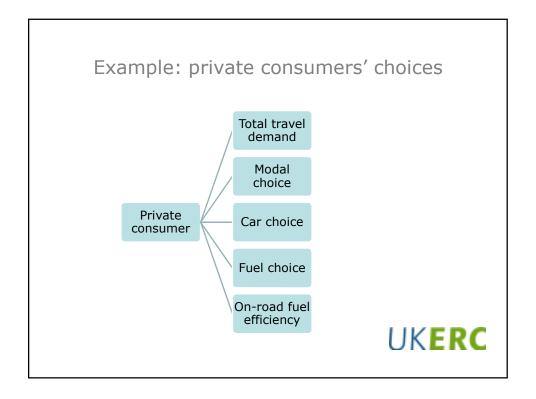
### What is this report about?

## Based on evidence, which policies are most effective at reducing CO2 emissions from surface passenger transport?

- Compare between and across policies that target car tech/choice and that target wider travel choices
- Review 'what works' in individual areas of policy
- Seek out where policies are complementary or synergistic
- Draw conclusions relevant to current UK policy



### Our approach


#### What we did

- Systematic search for evidence on CO2 relevant policies
- c.400 pieces of evidence revealed
- Created a framework: policies, choices, key actors:
  - Govts
  - Car makers
  - Consumers
  - Business users
  - Fuel companies

#### And how

- Define the question
- Form a team of experts
- Gather evidence
- Consult wider experts
- Synthesise
- Peer review
- Report (today is the start, publication after Summer)





Transport and carbon myths



### Myth 1: Behaviour change can't make a big impact on carbon

### Scope for behaviour change is large

- 25% car trips are less than 2 miles
- Average car occupancy (commuting): 1.2
- 20-30% trips by car 'unnecessary' (RAC; STT)
- Number of households who already live without a car in UK: 24%; No. of households in urban areas without a car 35%

#### Policy can deliver savings

- Workplace travel plans ave 18% cut in car trips (UK, Netherlands, Japan, US)
- Congestion charging 15% cut in carbon (London, Stockholm)
- Road space reallocation ave 18% traffic 'disappears' from the network (worldwide)
- 'Parking cash out' ave 13% cut in VMT (US)



### Myth 2: Mode choice is all about public transport

- Other areas may be neglected e.g. cycling and walking, car clubs, car sharing
- Public transport is important, but cannot do the job on its own
  - New/better services can generate new demand
  - Users may switch from other non-car modes so net benefit is eroded
  - Greater PT use only delivers carbon savings if the relative efficiency is good
  - Much focus has been on local PT, but greatest travel growth is long distance trips UK**erc**
  - Can PT expand sufficiently?

### Myth 3: Road user charges are effective at saving carbon

- Highly visible variable costs can reduce car use but...
- Impact on traffic demand is dependent on the scale of implementation and link to other taxes/instruments
  - -1% CO2 (revenue neutral) to -8.2% (revenue raising)
- Redistribution of journeys spatially and temporally may be good for congestion but do nothing for CO2
- No incentive to buy more efficient car (unless CO2 linked)
- There is a need for graduated charges and flanking policies



### Myth 4: Rising fuel prices will succeed where policy has failed

### Strong data on elasticities - prices can affect demand through changes in car choice and use but ...

- For car use carbon savings are dependent on the <u>total</u> price of <u>motoring</u> – emission reduction requires high and <u>sustained</u> increases
- Choice of vehicle is complex and more affected by upfront than recurring costs
- Mode choice is also complex and affected by more than relative price (convenience, safety, comfort)
- Elasticities may be changing are people becoming more resilient to fuel price increases or have they had enough?
- Rising incomes can over-ride demand changes due to fuel prices



### Myth 5: Vehicle efficiency standards don't work

- Vehicle efficiency standards can result in improved fleet fuel economy, provided they are mandatory, ambitious and cannot be circumvented
- Japanese TopRunner programme has been broadly effective
- Both CAFE and the EU Voluntary Agreement got results. But regulation will disappoint if it:
  - Lacks sanction EU VA
  - Lacks ambition CAFE
  - Allows circumvention CAFE



### Myth 6: Vehicle efficiency standards alone can deliver

- Consumers can only buy options available to them, and so vehicle efficiency standards are very important
- However, policy is also needed to influence vehicle choice:
  - Upfront costs feature strongly in purchase choices
  - Point of sale incentives may be more effective than circulation, road use or fuel tax
  - Information for buyers is needed to support other policies, but is not enough by itself
- Interactions with other choices are crucial:
  - Other policies needed to influence car use UKERC



### So what works?

### There are no magic bullets

- Policies must work in combination as packages to:
  - Optimise effectiveness through synergies
  - Counter rebound effects
  - Ensure lock-in and longevity of savings
  - Address policy leakage
  - Ensure that all choices are consistent with saving carbon
- But we must recognise that the evidence is more authoritative in some areas than others...



### The state of the evidence

- There is a large body of readily accessible evidence on efficiency standards and fuel price elasticities
- Evidence on other policies may be less visible:
  - The data is not explicitly aimed at CO2
  - The data is not readily accessible (local council drawers)
  - Track record for 'soft' policies is relatively short in the CO2 arena
- The evidence tends to concentrate on single initiatives and not combinations
- More accessible evidence leads to action which leads to more evidence which leads to action. etc....



### Conclusions

- There is untapped potential for carbon reduction from altering consumer behaviour
- Public transport is important, as well as other alternatives to private cars, though these are not the whole solution
- Road user charges can reduce road use but may not reduce carbon, unless accompanied by other measures
- Fuel costs are only one influence on vehicle choice and use and response is fairly inelastic
- Vehicle efficiency standards can improve fleet fuel economy over time, if they are mandatory, ambitious and without loopholes
- Vehicle efficiency standards can make vehicles available, but policy is also needed to influence vehicle choice by consumers



## Interactive Manual of Policies to Abate Carbon Transport

www.impact-ukerc.org



