Future Fuels and Environmental Impacts

Malcolm Fergusson

Institute for European Environmental Policy

Road Transport Impacts

- Air quality
- Climate change
- Land use and habitats
- Urban quality
- Security of oil supplies

The UK Policy Context

PIU Energy Review

Powering Future Vehicles consultation

- Energy White Paper
- DfT analysis of biofuels and H₂
- Biofuels directive

Oil Dependency in UK Transport

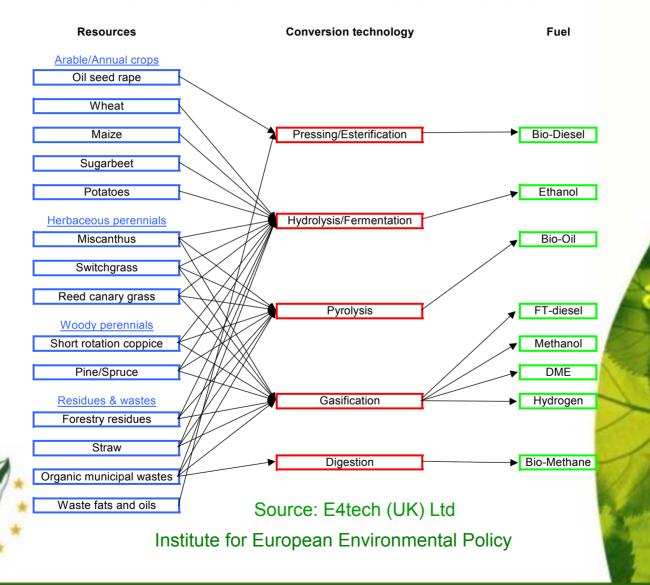
- >50% oil products by weight go to road
- Road (and air and water) almost 100% oil-based
- UK reserves in decline
 - will soon be a net importer

Future Fuels

- Other fossil fuels
 - LPG, CNG
- Liquid biofuels
 - Methyl ester, bioethanol ...
- Hydrogen
 - Compressed or liquefied

Other Fossil Fuels

- LPG usually in LDVs
- CNG in HDVs (eg buses)
- Limited environmental benefit
- Costlier than conventional petrol and diesel
- Limited market?



The UK Vehicle Fleet

- 29 million vehicles
 - 23m cars and taxis
 - 2m light goods
 - 0.5m heavy goods
 - 0.1m public service vehicles
- Alternative fuels
 - 250k LPG by 2004
 - 40k electric et al
 - All others petrol or diesel

Institute for European Environmental Policy

Products and Processes

Main Biofuel Sources

- Immediately available:
 - Annual crops
 - Waste oils and fats
- Longer term options
 - Herbaceous perennials
 - Woody perennials
 - Waste

Feedstocks from Agriculture

- Biodiesel from oil
 - Rapeseed
 - Sunflowers
 - Palm and Soya
- Bioethanol from ...
 - Grain
 - Sugarbeet or cane
 - Potatoes

Perennial Feedstocks

- Herbaceous
 - Miscanthus
 - Switchgrass, etc
- Woody
 - Short rotation coppice (willow, poplar)
 - Other forest wood
 - Forest and woodland wastes

Feedstocks from Waste

- Oils and fats
- Straw
- Forest wastes
- Organic municipal waste

Processes

- Esterification
- Fermentation
- Gasification

Others less relevant

Greenhouse Gas Reductions from Biofuels

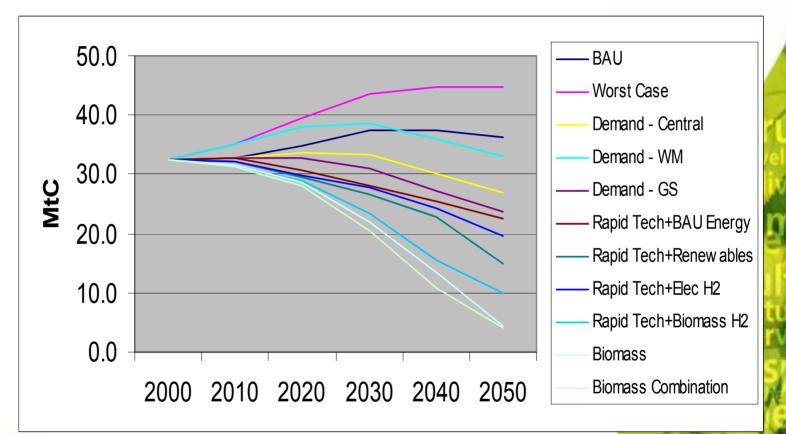
- Arable crop-based fuels
 - Some ghg benefit
 - Depends on agricultural inputs
- Fuels from waste or woody crops
 - Larger benefits
 - Technology not ready
 - Uncertainty over what is available

Local Impacts of Energy Crops

- Biodiversity
- Landscape
- Air Quality
- Co-products / waste
- Water / soil
- Social / rural economy
- Local Characteristics
- Soil-nutrient fluxes C and N

Factors Affecting Local Impact

- Annual v perennial crops
- low vs high input (intensity issues)
- diversity vs homogeneity
- Scale of planting
- geographic / locational / regional
- Accreditation



Renewable Hydrogen?

- Long term renewable electricity for hydrogen may well be the ideal, but
- In the short term, renewable electricity saves more carbon by displacing fossil fuels in electricity generation
- There could also be a strategic role for biomass (waste & woody crops)

Carbon Outcomes

Conclusions

- Reliance on petroleum can be substantially reduced
 - Vehicle efficiency
 - LPG, CNG probably marginal
 - biofuels could contribute but how much?
 - Longer term shift to hydrogen or methanol
- Availability of renewables is key
 - Arable crops may be short-term option
 - Significant increase in renewable electricity
 - And/or waste and woody biofuels

