
BP Biofuels a growing alternative

Ian Dobson London, 7 September 2007

Introduction

- Shaper of an emerging industry
- Leadership position in the industry

The long-term energy mix will change...

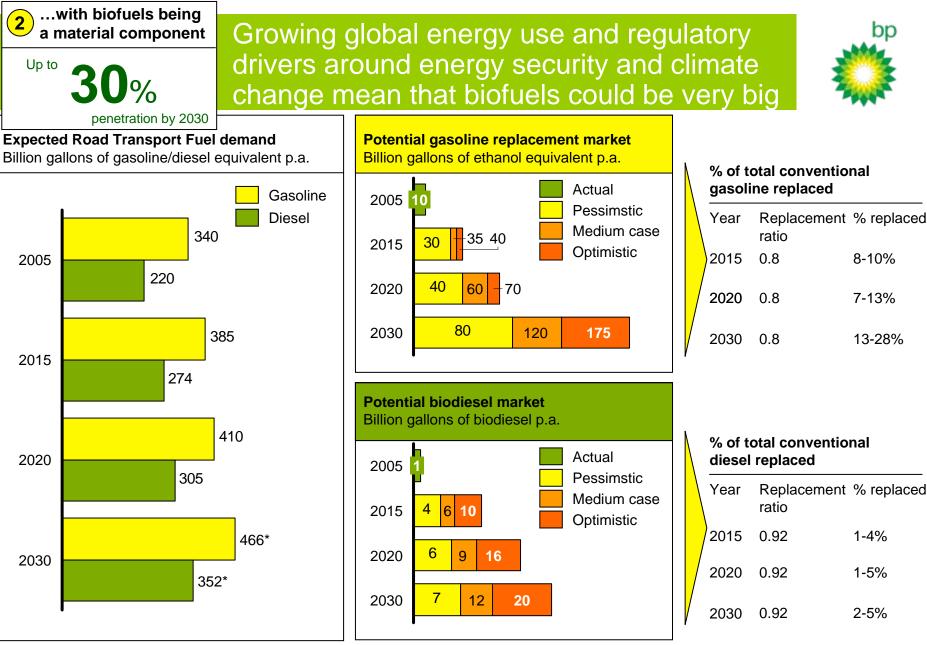
Regulatory Drivers

• Energy security

(1

- Climate change
- Rural development

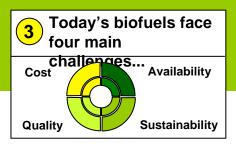
Legislation is shaping the future demand mix of RTFs



ETHANOL EXAMPLE

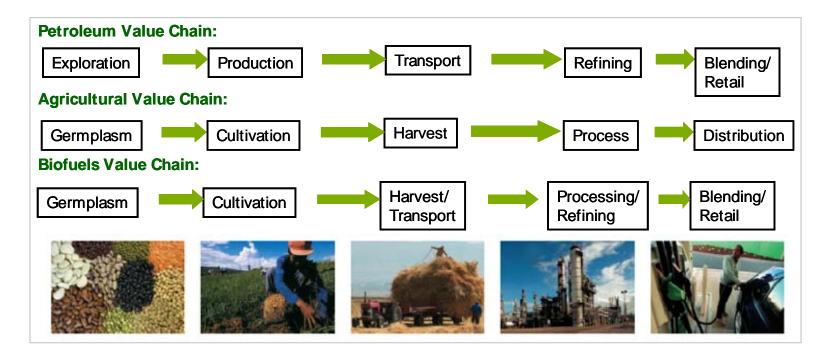
Region	Demand type	Most likely demand (bgy)	Rationale
US	Mandate	30	Target of 36 b gals in 2022
EU	Mandate	4	Meet 10% target (in both ethanol and biodiesel)
Brazil	Economic	16	Ability of car fleet to absorb ethanol
China	Mandate	4	Current mandate: ~4 b gals in 2020, ~1 b gals in 2012, all from non-food feedstock. Mostly to be based on development of LC technology
India	Mandate	0.5	E10 in 2012-17
Japan	Mandate	1.7	E10 mandate for 2017
Other Asia	Mandate	1.2	Different mandates by country
ROW*	Mandate	3	Different mandates by country
TOTAL		~60 b gals	BP Biofuels a growing alternative
* Includes Canada, Mexico, other Central and South America			

Source: Team analysis


2

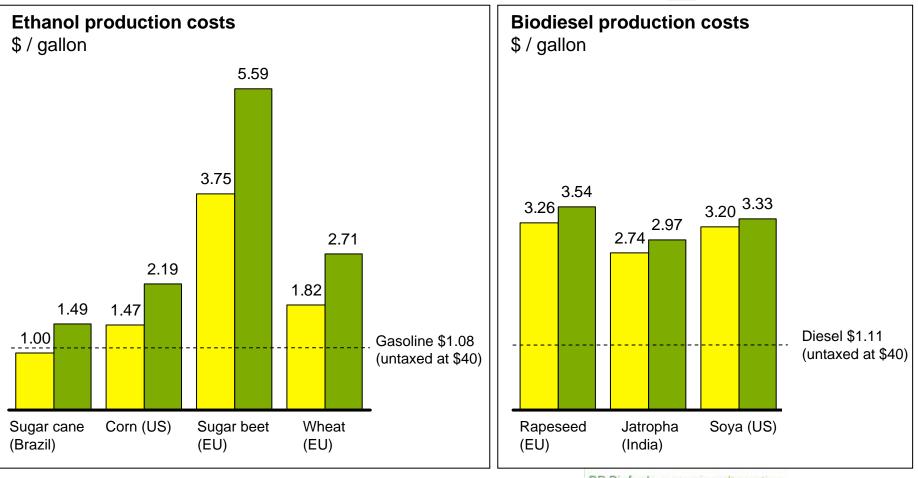
* Derived by applying IEA/WBSCD CAGRs to BP's 2020 numbers

** Volume of conventional fuel replaced by I gallon of relevant biofuel

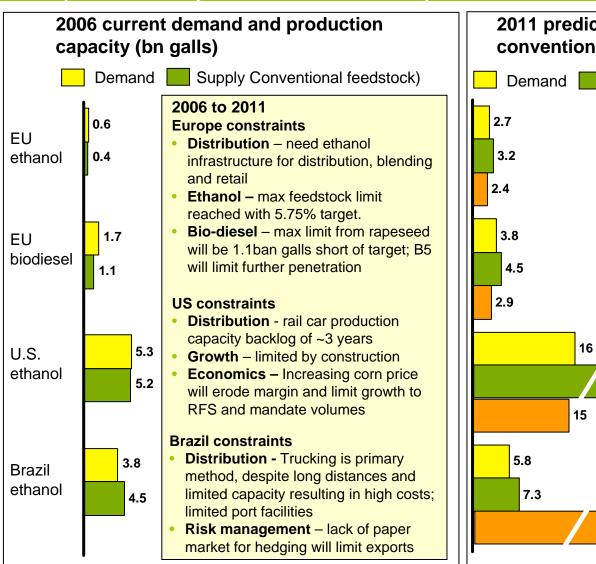

Source: R&M 2020 world study; IEA/WBSCD Sustainable Mobility Project; Team analysis

However, there are challenges in moving from carbohydrates to hydrocarbons today

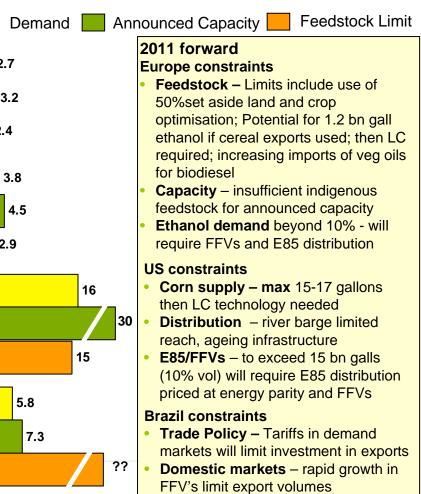
 The biofuels industry is being created through the fusion of the two most important primary industries in the world – agriculture and energy


• But today's biofuels face 4 main challenges...

Cost: absent subsidies, biofuels need high oil prices in order to compete with their fossil equivalents



Equivalent volume basis Equivalent energy content basis


Availability: biofuels currently represent 2-3% of the transport fuel pool. Today, feedstocks limit penetration to around 5-7%

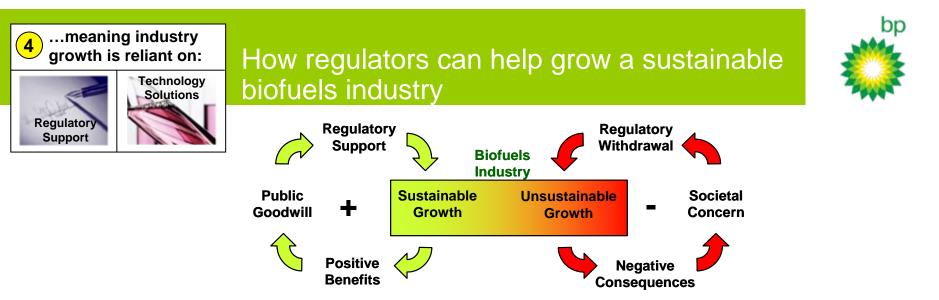
(2)

2011 predicted demand and maximum conventional feedstock supply (bn galls)

	onventional bio-components a A fuel chemist would not hav Ethanol – poor gasoline component	
Fuel performance characteristics	 High octane (favours good performance) but High blend vapour pressure Energy content approximately 1/3 lower than conventional gasoline Water affinity and risk of phase separation when blended with gasoline 	 Sulphur and aromatic free Higher cetane value and improved lubricity properties vs. diesel Low temperature and stability/deposit formation issues Energy content 15% lower than conventional diesel
Suitability for use in premium products	 Poor – Energy content and water affinity mean that ethanol is not a good premium gasoline component 	 Poor – Stability and energy content mean that FAME is not an ideal component for premium diesel
Blending limitations	 Corrosive effect as well as performance issues such as fuel economy limit the content of ethanol in standard grade gasoline (US 10% v/v, EU 5% v/v) 	 Typically limited in standard grade diesel (e.g., 5% v/v max. Europe) OEM concern over deposit formation in high pressure fuel injection systems used in modern diesel passenger vehicles

- Supply chain implications
- Poor can only be blended at the terminals, ethanol-containing blends cannot be moved by pipeline or ship and implies a segregated distribution network
- E85 issues around dispenser certification (safety)
- **Moderate** low concentration blends (up to 5%) treated as fungible in many markets; higher blend levels may have impacts on pipeline contamination

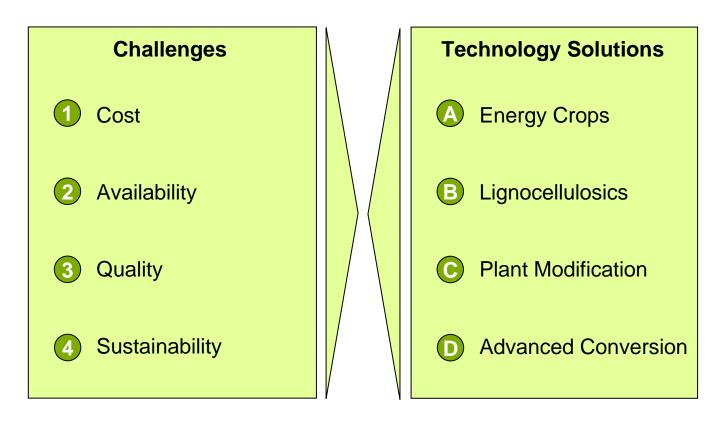
BP Biofuels a growing alternative


7

Sustainability: fundamental to an enduring industry is the avoidance of harmful environmental and social impacts

Issues (not exhaustive) include:

- Placing stress on the world's limited water resources
- Biodiversity
- Deforestation the destruction of High Conservation Value Forest (HCVF)*
- Child and forced labour and other employment abuses
- Planting on peat soils
- Community conflict issues
- Land rights, including economic and physical displacement
- Effects of monoculture on local food production and local economies
- Pollution and environmental damage (water / soil / air), including related socio-economic impacts
- Net greenhouse gas balances resulting from land use change


- Market-based regulations that balance environmental, energy security and rural development goals that face communities around the world
- Encouragement of innovation at all stages of the value chain. It is important that regulation does not pick winners but instead allows the market to find solutions
- Policy that is geared to emissions reductions or the quantity of fuel energy replaced – rather than mandated volumes of a particular product.
- Regulatory mechanisms which apply equally to all and which maintain flexibility

 for example avoiding fixed per gallon mandates.
- Support for guidelines for sourcing from sustainable and responsible production routes

How technology has a major role to play

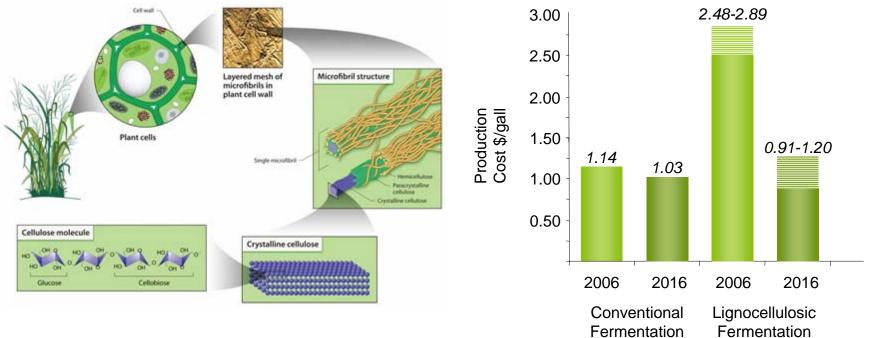
Crops like Jatropha offer improved sustainability in bio-diesel

Energy crops: non-food crops grown on marginal land reduce competition with food, especially in developing countries

BP Jatropha Nursery Plantation, Andra Pradesh State, India

BP – first oil major

of Jatropha oil


BP Biofuels a growing alternative

to join the roundtable on sustainable Palm Oil

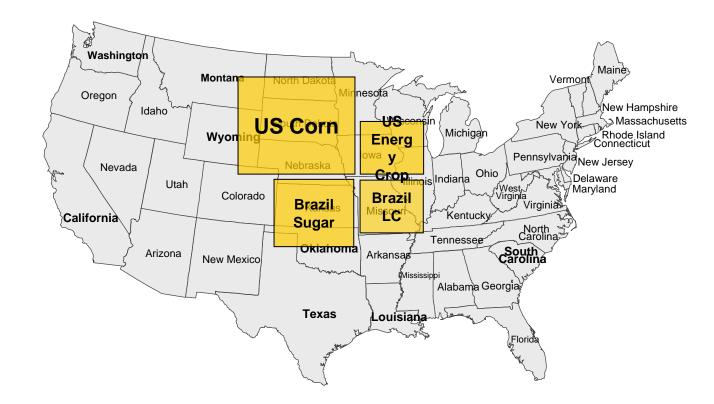
Developing a framework for sustainable production Begnocellulosics: 25-100% yield improvements* in 5-10 years. Brazilian sugarcane will remain competitive (economics & GHG)

bn

Lignocellulose needs technology advances – BP EBI investment

* Corn example: 25% (fibre only); 100% (stover), with 50% of stover must remain in field to preserve ecosystem

Plant modification: improving economics and addressing sustainability by reducing the input intensity

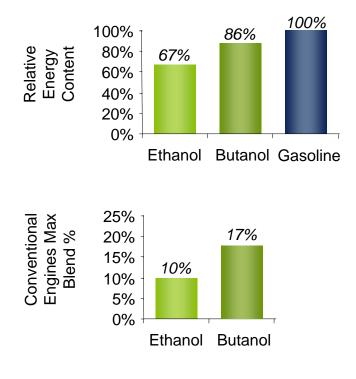

- Some current generation technology can be input intensive e.g.
 - Water usage for plant growth
 - Acid usage in first generation lignocellulosic conversion
- Opportunities:
 - Genetically modified plants which are less thirsty
 - Plant decomposition triggered by UV-light

Genetic technologies are important in biofuels development

bp

US example: land area required to replace 30% of the 2006 gasoline market

Legislation driven by objectives is required rather than legislation driven by technologies


2006 US gasoline market =140 bn galls.

30% v/v replacement adjusted for lower energy content of ethanol

- Butanol offers advantages over conventional biofuels (e.g. ethanol)
- Benefits:
 - Not corrosive can use in higher concentrations
 - Low water affinity no risk of phase separation; can pipeline
 - Easier to blend no RVP issues
 - Higher energy content better for the environment; better for the consumer (fewer fills)

BP Biofuels a growing alternative

Butanol allows deeper market penetration by biofuels giving higher total CO₂ savings

Shaper of an emerging industry

Leadership position in the industry

BP is committed to the sustainable growth of the biofuels industry

"BP is building a Biofuels business underpinned by the exploitation of proprietary technology and ownership of advantaged assets, logistics and feedstocks."

Investment in Ethanol with ABF & DuPont – Hull, UK
Investment in sustainable diesel – with D1 Oils
Energy Biosciences Institute – Berkeley/University of Illinois
Crop development – investment in Mendel inc.
Butanol development programme with DuPont
Butanol Pilot Plant in Hull, UK