Well-to-Wheels analysis
of future fuels and associated automotive powertrains
in the European context

A joint initiative of EUCAR/JRC/CONCAWE

Preliminary Results for Hydrogen

Summary of Material Presented to the EC Contact Group on Alternative Fuels
in May 2003
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Well-to-Wheels analysis
of future fuels and associated automotive powertrains
in the European context

» Partial and preliminary results
[ Conventional fuels/engines
O Hydrogen powertrains
» Well-to-tank
[ Gasoline and diesel production and distribution
O Hydrogen pathways
» Tank-to Wheels 2002, assessments 2010
O Conventional advanced gasoline, diesel, natural gas vehicles
[ Hydrogen vehicles

» Well-to-Wheels integration
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WELL-TO-TANK
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Well-to-Tank analysis
Conventional oil pathways
» At the 2010-2020 horizon, alternative fuels will replace some fraction of
the current conventional fuels market

[ The energy that can be saved and the GHG emissions that can be avoided
therefore pertain to the MARGINAL production of conventional fuels
» Europe is short in diesel and long in gasoline: the “natural” balance
between gasoline and middle distillates is stretched

[ As a result, refinery production of marginal diesel is more energy-
intensive than that of marginal gasoline
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Compressed hydrogen pathways
(excluding electricity)

Coal (EU mix) jJProduction and »|EU mix typical Gasification + »|Pipeline, 50 km
conditioning CO shift + compression
NG (piped) »|Production and y|Pipeline into EU »|NG grid
conditioning EU-mix
4000 km
7000 km Reforming (on-site) »| Compression
»|Reforming (central) yp|Road or pipeline |
50 km
+ compression
NG (remote) JProductionand | _jlliquefaction »|Shipping (LNG) > >
conditioning
Wood waste _jJCollection p|Road, 50 km »|Small scale gasif. »|Pipeline, 10 km
4 + CO shift + compression
yp|Road, 50 km pLarge scale gasif.
+ Shipping CO shift
. I Pipeline, 50. km
Farmed wood > Growing > Road, 50 km \ + compression
Harvesting + Shipping
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Liquefied hydrogen pathways

(excluding electricity)

NG (piped) »| Production and Pipeline into EU »|Reforming »|Road, 300 km
conditioning (central)

Y

+ Hy Liquefaction

NG (remote)  JProductionand | ,JReforming | »{Shipping Road, 500 km

conditioning + H, liquefaction (LH2)

Y

NG (remote)  JProductionand | Jlliquefaction »|Shipping (LNG) y|Reforming (central) y|Road, 500 km
conditioning + H. liquefaction
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Electricity to hydrogen pathways

Electricity yJElectrolysis y]Pipeline 5
(grid) (central) Compression
yJElectrolysis »|Compression 5
(on-site)
Electricity p|Electrolysis p{Road, 300 km |
(grid) (central)
+ H; Liquefaction

Electricity production pathways

Coal (EU mix) jfProduction and »| Typical of EU mix »{IGCC p|MV grid S
conditioning
NG (piped) »{Production and SIPipeline into EU oJCCGT o|MV grid S
conditioning
NG (remote) JJliquifaction »{Shipping (LNG) »|CCGT p|MV grid S
EU fuel mix  JIEU mix typical MV grid S
Wind | Wind turbine p|MV grid S
On/offshore
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NG-to-Hydrogen pathways Compressed Hydrogen

Compressed hydrogen from on-site NG reforming

Reforming energy is the main element

Compressed hydrogen from on-site NG reforming

GHG from reforming is major contribution (because of decarbonisation)
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NG-to-Hydrogen pathways Compressed Hydrogen

On-site vs central reforming

Central reforming is more efficient (heat recovery)

1.2 Distribution mode has only marginal effect
1.0 | (only pipeline is practical in the long term) I
0.8 . .
2 On-site vs central reforming
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NG Extraction NG Transport NG Reforming Distribution  Total chain
OPiped NG, 4000 k & Processing Distribution and delivery

M Piped NG, 4000 km, on-site reforming

H Piped NG, 4000 km, central reforming, pipeline

OPiped NG, 4000 km, central reforming, trucking

Wil CENTRE

EUROPEAN COMMISSION Slide 9

e JOINT
g UCAR RESEARCH CONCAWE

13/05/0



NG-to-Hydrogen pathways Liquid Hydrogen

Liquid hydrogen

18 - Piped NG is slightly more favourable for 4000 km

1.6 (LNG similar to 7000 km pipeline case)
1.4 -
12 1 Remote hydrogen liquefaction not attractive
g 4an
2 Liquid hydrogen
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NG-to-Hydrogen pathways Sum mary

Hydrogen WTT pathways B Conditioning & distribution
[@ Transformation near market
LH, is more energy-intensive than CH, |,
@ Transformation at source
Hydrogen WTT pathways B Conditioning & distribution
@ Transformation near market
g O Transportation to market
E C H2 LH2 M Transformation at source
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Wood-to-Hydrogen pathways

Wood to Hydrogen

200 MW (biomass) is a very large plant! (about 50 t/h of wood)

1.8
1.6 - Wood to Hydrogen
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mWood waste, on-site gasification, 10 MW (biomass)

mWood waste, large scale gasification, 200 MW (biomass)

OFarmed wood , on-site gasification, 10 MW (biomass)
OFarmed wood, large scale gasification, 200 MW (biomass)

OFarmed wood, large scale gasification, 200 MW (biomass), liquefaction
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Hydrogen via electrolysis pathways

Hydrogen via electrolysis

Little difference between central and on-site electrolysis

EU-mix more energy-intensive than NG/CCGT, but...

3.5 Hydrogen via electrolysis

2.0 ...very close in terms of GHG
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E Piped NG, 4000 km, CCGT, on-site electrolysis

O Piped NG, 4000 km, CCGT, central electrolysis

£ EU-mix electricity, on-site electrolysis, liquefaction

O Piped NG, 4000 km, CCGT, central electrolysis, liquefaction
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Hydrogen via electrolysis pathways

Wood is more energy-intensive than NG
5.0 . .
us The type of power plant is crucial
4.0 Hydrogen via electrolysis
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Hydrogen pathways Summary

Hydrogen WTT pathways B Conditioning & distribution
Hydrogen WTT pathways B Conditioning & distribution
@ Transformation near market
O Transportation to market
CH 2 LH 2 [ Transformation at source
300
250 NG wood elec M Production & conditioning at source
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Electrolysis must be the “last resort”
unless an uncontroversial renewable energy source can be used
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WTT Conclusions

» LH, is more energy and GHG intensive than CH,

» Central reforming requires somewhat less energy than on-site

» Electrolysis is very energy-intensive and can only be justified if
genuinely renewable electricity is available
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TANK-TO-WHEELS

Gasoline, Diesel, Natural gas, Hydrogen
2002 - 2010
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Tank-to-Wheels study:

Gasoline, Diesel, Natural gas, Hydrogen

» For the purpose of this study, a “virtual” vehicle was created, figurable
as a VW Golf 1.6 | gasoline (most popular segment of the market)

» The results do not represent a fleet average

» The Fuels / powertrains considered here are
- Technologies 2002 are purely Internal Combust. Engines (I.C.E.)
- Technologies assessed for 2010 include : I.C.E. & Fuel Cells

» The engine technologies and fuels investigated do not imply any
assumptions with regard to their potential market share
ICE hybrid vehicles will be included later
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Tank-to-Wheels study

Performance & Emissions

All technologies fulfil at least minimal customer performance criteria

[ For bi-fuel (gasoline-CNG) the vehicle performance decay (12% torque down-shift) is
accepted. A dedicated CNG engine, upsized at 2 . to fulfil the required performances
is simulated.

[ The Hz I.C. engine is simulated as extrapolated from single cylinder present studies :
1.3 liter, already turbo-charged to meet the performances.

“Vehicle / Fuel” combinations comply with emissions regulations
[ The 2002 vehicles comply with Euro lli
O The 2010 vehicles comply with EU IV

Direct Injection for gaseous fuels is not simulated as still at the level of research
with open issues to be adressed (energy penalty or limited range)
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Tank-to-Wheels study

Fuels & adapted technologies for comparable performance

Slide 20

i Fuel
gasoline diesel cell
Engine Type PISI SIDI CIDI F.C.
Gasoline 1.6 lit. 1.6 lit.
Diesel 1.9 lit.
CNG (Bi Fuels) 1.6 lit.*
CNG (dedicated) 2.0 lit.
CGH2 1.3 lit. TC 75 kW Objective is to compare
LH2 1.3 lit. TC 75 kW vehicles at same level
of technology
* Reduced performance
PISI : Port Injection Spark Ignition
SIDI : Spark Ignition Direct Injection
CIDI : Compression Ignition Direct Injection (Common Rail)
F.C.: Fuel Cells (Direct Hydrogen)
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Tank-to-Wheels study
Comments : state of the art 2002

» H2 ICE : Energy efficiency results from simulation are better than
gasoline reference :
» Reason:

- The S.I. H2 engine model is, already in 2002, simulated as downsized
and turbo charged (DSTC), while the reference gasoline engine is not.

- The gasoline ICE will include the same technology in the 2010 version

(and therefore be more energy efficient)
- The benefit of DSTC will not be accounted twice for H2 in 2010

No GHG are emitted by the H2 powertrain, except the NOx contribution
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Tank-to-Wheels study
Compared Energy Efficiency

. di I CNG CNG
gasoline lese bi-fuel dedicated
Cold start on NEDC PISI1,6 | SIDI1,6 |DIESEL1,9|CNGBF 1,6{ CNG2,0 | CGH2 | LH2
CO2 (g/km) 166,2 155,3 135 129 130 0 0
ENERGY EFF. (MJ/100km) 223,5 209 183 229 230 180 180
MASS Consump. (kg/100km) 5,21 4,87 4,26 5,08 5,1 1,50 1,50
FUEL Consump. (I/100km) 6,95 6,49 5,1 7,12 7,15 5,60 5,60
Other G.H.G. (g/km)
Methane (g/kmCO2 eq.) 0,84 0,84 0,25 3,36 3,36
N20 (g/km CO2 eq 0,93 0,93 3,1 0,93 0,93 0,93 0,93
GHG global g/km 168,0 157,0 137,9 133,3 133,8 0,9 0,9
Energy efficiency (MJ / km )
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Tank-to-Wheels study
Compared G.H.G. emissions

Cold start on NEDC PISI1,6 | SIDI1,6 |DIESEL1,9|CNGBF 1,6/ CNG2,0 | CGH2 LH2
CO2 (g/km) 166,2 155,3 135 129 130 0 0
ENERGY EFF. (MJ/100km) 223,5 209 183 229 230 180 180
MASS Consump. (kg/100km) 5,21 4,87 4,26 5,08 5,1 1,50 1,50
FUEL Consump. (I /100km) 6,95 6,49 5,1 7,12 7,15 5,60 5,60
Other G.H.G. (g/km)
Methane (g/kmCQO2 eq.) 0,84 0,84 0,25 3,36 3,36
N20 (g/km CO2 eq 0,93 0,93 3,1 0,93 0,93 0,93 0,93
GHG global g/km 168,0 157,0 137,9 133,3 133,8 0,9 0,9
Fuels / Vehicles G.H.G. (g/km CO2 eq.)
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Tank-to-VWWheels study
Evolutions 2002 - 2010

From present State of the Art until 2010, Fuel efficiency evolutions should
occur, depending on:

- the maturity of the technology
- the specific possibilities and constraints of the fuel

Car manufacturers globally converge towards assumptions :

- Port injection S.I. : + 15 % (includ. Downsizing Turbo Charged)
- Direct injection S.1. : + 10 %
- Diesel : +6 % (or 2 %, only, under Particle Trap)
- Hydrogen I.C.E. : +6 % (D.S.T.C. already accounted as 2002
-Nat. Gas & H2 : + 1 % supplementary for optimal air - gas mixture
DPF w/o DPF
PISI SIDI DIESEL DIESEL CNGI H2
2010 improvement 15 10 2 6 16 7
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Tank-to-Wheels study
Compared Energy Efficiency

Gasoline DPF w/o DPF
Cold start N.E.D.C. PISI SIDI DIESEL DIESEL CNG CGH2 LH2
CO2 (g/km) 140 138 131 126 107 0 0
ENERGY EFF. (MJ/100km) 190,0 188,0 179,1 171,8 190,8 168,1 168,1
MASS Consump. (kg/100km) 443 4,38 417 4,00 4,23 1,40 1,40
Cons. NEDC (I/100km) 2010 5,91 5,84 4,99 4,79 5,93 5,22 5,22
Other G.H.G. (g/km)
Methane (g/kmCQO2 eq.) 0,42 0,42 0,21 0,21 0,84
N20 (g/km CO2 eq 0,5 0,5 1,55 1,55 0,5 0,5 0,5
GHG global g/km 140,5 138,9 133,0 127,6 108,8 0,5 0,5
MJ / km on the NEDC (cold)
1,95
Q 1,90
Q'\ 1,85
\(b . 1,80
9
1,75 -
* ¢?
O‘e o, 1,70
Q \e 1,65 -
1,60 -
1,55
PISI SIDI DIESEL DIESEL CGH2
DPF w.o. DPF
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Tank-to-Wheels study
Compared G.H.G. emissions

Gasoline DPF w/o DPF
Cold start N.E.D.C. PISI SIDI DIESEL DIESEL CNG CGH2 LH2
CO2 (g/km) 140 138 131 126 107 0 0
ENERGY EFF. (MJ/100km) 190 188 179 172 191 168 168
MASS Consump. (kg/100km) 443 4.38 417 4.00 423 1.40 1.40
Cons. NEDC (I/100km) 2010 5.91 5.84 4.99 4.79 5.93 5.22 5.22
Other G.H.G. (g/km)
Methane (g/kmCQO2 eq.) 042 042 0.21 0.21 0.84
N20 (g/km CO2 eq 0.5 0.5 1.55 1.55 0.5 0.5 0.5
GHG global g/km 140.5 138.9 133.0 127.6 108.8 0.5 0.5
Fuels/ Vehicles 2010 G.H.G.emissions
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Tank-to-Wheels study

Comments : assessments 2010

> Hydrogen Fuel Cells :

> Non Hybrid :

Fuel :

> Hybrid : Fuel :

> Gasoline vehicles :

Stack : 80 kW Elect. Motor :

Diesel, Nat.Gas, H2 vehicles : Cycle test weight class::

H2 Fuel Cells vehicles :

75 kW
200 kg 73 kg
4.7 kg Pressure Tank : 69 kg
(CryoTank . 57Kkg)
4.2 kg Pressure Tank : 56 kg
Batteries : 20 kg (CryoTank . 51kg)
“Battery Electric” range : 20 km
Cycle test weight class : 1250 kg
1360 kg
Cycle test weight class: 1470 kg
£ pRter CONCaAWS
CENTRE
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Tank-to-Wheels study

Comments : assessments 2010

FC Engine efficiency

60% M

(8)

[

]

S 40%

(v
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E 30%

i)

>

D 20% — H2FC
10%
OOA) T T T T

0% 20% 40% 60% 80% 100%

% Net Power

The Fuel Cell system efficiency maps, implemented in code Advisor, are an average
distribution . (Sources : G.M. Opel, European program FUERO, Daimler Chrysler)
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Compared Energy Efficiency _
P ~

Tank-to-Wheels study

/ >
Cold start N.E.D.C. PISI DIESEL CNG LH2 ICE {CGH2 F.C.CGH2 Hyb.F.C.
CO2 (g/km) 140 131 107 o / 0 0 \
ENERGY EFF. (MJ/100km) 190 179 191 168 | 94 84
MASS Consump. (kg/100km) 4,43 417 4,23 1,40, 0,78 0,70 |
Cons. NEDC (//100km) 2010 5,91 4,99 593 5221 2,92 2,60
Other G.H.G. (g/km) \ I
Methane (g/kmCO2 eq.) 0,42 0,21 0,84 /
N20O (g/km CO2 eq 0,5 1,55 0,5 0,5 . /
GHG global g/km 140,5 133,0 108,8 05 | % 00 0,0 p
MJ / km on the NEDC (cold)
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N
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O
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Tank-to-Wheels study
Compared G.H.G. emissions

Cold start N.E.D.C. PISI DIESEL CNG LH2ICE |CGH2 F.C.|CGH2 Hyb. F.C.
CO2 (g/km) 140 131 107 0 0 0
ENERGY EFF. (MJ/100km) 190,0 179,1 190,8 168,1 94,0 84,0
MASS Consump. (kg/100km) 443 417 4,23 1,40 0,78 0,70
Cons. NEDC (I/100km) 2010 5,91 4,99 5,93 5,22 2,92 2,60
Other G.H.G. (g/km)
Methane (g/kmCO2 eq.) 0,42 0,21 0,84
N20 (g/km CO2 eq 05 1,55 05 05
GHG global g/km 140,5 133,0 108,8 0,5 0,0 0,0
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WELL-TO-WHEELS
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Well-to-Wheels analysis
SELECTED PATHWAYS

The following WTW integration aims at comparing:

2002 / 2010 technologies
Gasoline, Diesel, NG Conventionals and H, ICE, Direct & Hybrid FC

Fuelled by

O Diesel & Gasoline Fossil Fuel

O CNG 4000 km for Conventionals

Compressed H2 Liquid H2
O CH,,NG 4000 km, on-site reforming O LH,, NG 4000 km, central reforming
O CH, and LH,, NG 4000 km, central reforming O LHZ2, remote reforming
O CH,, LNG, central reforming O LH,, LNG, central reforming
O CH2, farmed wood, gasifier on-site O LH2, farmed wood, gasifier central
O CH2, farmed wood, gasifier central O LH,, EU-mix electricity, electrolysis central

O CH,, EU-mix electricity, electrolysis on-site O LH2, NG 4000 km, CCGT, electrolysis cen
O CHZ2, EU-mix coal, gasifier central

for ICE, Direct & Hybrid FC
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Well-to-VWheels analysis
ICE H2 vs conventional pathways

WTW, 2010 technologies, hydrogen ICE
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Well-to-VWheels analysis
ICE H, vs conventional pathways

WTW, 2010 technologies, Hydrogen ICE

ICE
Liquid H,

ICE

Compressed H,

ICE

Conventionals
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Well-to-Wheels assessment

Fuels / Vehicles assumptions 2010
Remarks for ICE

Global Primary Energy Intensity: for all fossil energy sources, used in ICE:

LH2 > CGH2 > Conventional fuels

Highest energy use Lowest energy use

GHG global impact :

= Direct use of NG as CNG better than hydrogen

= Hydrogen ICE more GHG-intensive than conventional engines/fuels
= Electrolysis worst option unless electricity is from renewable source
= Coal could only compete with CO, sequestration

Renewable sources obviously give best GHG but...
Are there alternative use for these?
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Well-to-VWheels analysis
Fuel Cell vs conventional pathways

WTW, 2010 technologies, hydrogen FC
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Well-to-VWheels analysis
FC vs conventional pathways

WTW, 2010 technologies, Hydrogen FC

FC
Liquid H,

FC

ICE

Compressed H,

Conventionals
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Well-to-Wheels assessment

Fuels / Vehicles ICE - F.C. 2010

Remarks

Global Primary Enerqgy Intensity: for all fossil sources:

LH,/FC ~ conventional ICEs > CH,/FC

Highest energy use Lowest energy use

GHG global impact :

= H, Fuel Cells, even with H2 from NG, compare favourably with
conventional fuels ICE’s

= Worst option remains Electrolysis from EU-mix power

ICE hybrids still to be calculated
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