

Well-to-Wheels analysis of future fuels and associated automotive powertrains in the European context

A joint initiative of **EUCAR/JRC/CONCAWE**

Preliminary Results for Hydrogen

Summary of Material Presented to the EC Contact Group on Alternative Fuels in May 2003

Well-to-Wheels analysis of future fuels and associated automotive powertrains in the European context

- Partial and preliminary results
 - □ Conventional fuels/engines
 - ☐ Hydrogen powertrains
- Well-to-tank
 - ☐ Gasoline and diesel production and distribution
 - ☐ Hydrogen pathways
- > Tank-to Wheels 2002, assessments 2010
 - ☐ Conventional advanced gasoline, diesel, natural gas vehicles
 - ☐ Hydrogen vehicles
- Well-to-Wheels integration

WELL-TO-TANK

Well-to-Tank analysis Conventional oil pathways

- At the 2010-2020 horizon, alternative fuels will replace some fraction of the current conventional fuels market
 - ☐ The energy that can be saved and the GHG emissions that can be avoided therefore pertain to the MARGINAL production of conventional fuels
- ➤ Europe is short in diesel and long in gasoline: the "natural" balance between gasoline and middle distillates is stretched

☐ As a result, refinery production of *marginal* diesel is more energy-intensive than that of *marginal* gasoline

Compressed hydrogen pathways (excluding electricity)

Liquefied hydrogen pathways (excluding electricity)

Electricity to hydrogen pathways

Electricity production pathways

Compressed Hydrogen

Reforming energy is the main element

Compressed Hydrogen

Liquid Hydrogen

concawe

Summary

Wood to Hydrogen

200 MW (biomass) is a very large plant! (about 50 t/h of wood)

Hydrogen via electrolysis pathways

Hydrogen pathways

Summary

Electrolysis must be the "last resort" unless an uncontroversial renewable energy source can be used

WTT Conclusions

- ➤ LH₂ is more energy and GHG intensive than CH₂
- Central reforming requires somewhat less energy than on-site
- ➤ Electrolysis is very energy-intensive and can only be justified if genuinely renewable electricity is available

TANK-TO-WHEELS

Gasoline, Diesel, Natural gas, Hydrogen 2002 - 2010

Tank-to-Wheels study: Gasoline, Diesel, Natural gas, Hydrogen

Prelimin

- For the purpose of this study, a "virtual" vehicle was created, figurable as a VW Golf 1.6 I gasoline (most popular segment of the market)
- > The results **do not** represent a fleet average
- > The Fuels / powertrains considered here are:
 - Technologies 2002 are purely Internal Combust. Engines (I.C.E.)
 - Technologies assessed for 2010 include: I.C.E. & Fuel Cells
- ➤ The engine technologies and fuels investigated do not imply any assumptions with regard to their potential market share

ICE hybrid vehicles will be included later

Tank-to-Wheels study Performance & Emissions

- > All technologies fulfil at least minimal customer performance criteria
 - ☐ For bi-fuel (gasoline-CNG) the vehicle performance decay (12% torque down-shift) is accepted. A dedicated CNG engine, upsized at 2 l. to fulfil the required performances is simulated.
 - ☐ The H₂ I.C. engine is simulated as extrapolated from single cylinder present studies : 1.3 liter, already turbo-charged to meet the performances.
- "Vehicle / Fuel" combinations comply with emissions regulations
 - ☐ The 2002 vehicles comply with Euro III
 - ☐ The 2010 vehicles comply with EU IV
- Direct Injection for gaseous fuels is not simulated as still at the level of research with open issues to be adressed (energy penalty or limited range)

Tank-to-Wheels study

Fuels & adapted technologies for comparable performance

	gasoline		diesel	cell
Engine Type	PISI	SIDI	CIDI	F.C.
Gasoline	1.6 lit.	1.6 lit.		
Diesel			1.9 lit.	
CNG (Bi Fuels)	1.6 lit.*			
CNG (dedicated)	2.0 lit.			
CGH2	1.3 lit. TC			75 kW
LH2	1.3 lit. TC			75 kW

Objective is to compare vehicles at same level of technology

PISI: Port Injection Spark Ignition

SIDI: Spark Ignition Direct Injection

CIDI: Compression Ignition Direct Injection (Common Rail)

F.C.: Fuel Cells (Direct Hydrogen)

^{*} Reduced performance

Tank-to-Wheels study

Comments: state of the art 2002

- ➤ <u>H2 ICE</u>: Energy efficiency results from simulation are better than gasoline reference:
- > Reason:
 - The S.I. H2 engine model is, already in 2002, simulated as <u>downsized</u> <u>and turbo charged (DSTC)</u>, while the reference gasoline engine is not.
 - The gasoline ICE will include the same technology in the 2010 version (and therefore be more energy efficient)
 - The benefit of DSTC will not be accounted twice for H2 in 2010

No GHG are emitted by the H2 powertrain, except the NOx contribution

Tank-to-Wheels study Compared Energy Efficiency

		CNG	CNG
gasoline	diesel	bi-fuel	dedicated

Cold start on NEDC	PISI 1,6	SIDI 1,6	DIESEL1,9	CNGBF 1,6	CNG2,0	CGH2	LH2
CO2 (g/km)	166,2	155,3	135	129	130	0	0
ENERGY EFF. (MJ/100km)	223,5	209	183	229	230	180	180
MASS Consump. (kg/100km)	5,21	4,87	4,26	5,08	5,1	1,50	1,50
FUEL Consump. (I /100km)	6,95	6,49	5,1	7,12	7,15	5,60	5,60
Other G.H.G. (g/km)							
Methane (g/kmCO2 eq.)	0,84	0,84	0,25	3,36	3,36		
N2O (g/km CO2 eq	0,93	0,93	3,1	0,93	0,93	0,93	0,93
GHG global g/km	168,0	157,0	137,9	133,3	133,8	0,9	0,9

Tank-to-Wheels study Compared G.H.G. emissions

Cold start on NEDC	PISI 1,6	SIDI 1,6	DIESEL1,9	CNGBF 1,6	CNG2,0	CGH2	LH2
CO2 (g/km)	166,2	155,3	135	129	130	0	0
ENERGY EFF. (MJ/100km)	223,5	209	183	229	230	180	180
MASS Consump. (kg/100km)	5,21	4,87	4,26	5,08	5,1	1,50	1,50
FUEL Consump. (I /100km)	6,95	6,49	5,1	7,12	7,15	5,60	5,60
Other G.H.G. (g/km)							
Methane (g/kmCO2 eq.)	0,84	0,84	0,25	3,36	3,36		
N2O (g/km CO2 eq	0,93	0,93	3,1	0,93	0,93	0,93	0,93
GHG global g/km	168,0	157,0	137,9	133,3	133,8	0,9	0,9

concawe

Tank-to-Wheels study

Evolutions 2002 - 2010

- From present State of the Art until 2010, Fuel efficiency evolutions should occur, depending on:
 - the maturity of the technology
 - the specific possibilities and constraints of the fuel
- Car manufacturers globally converge towards assumptions:
 - Port injection S.I.: + 15 % (includ. Downsizing Turbo Charged)
 - Direct injection S.I.: + 10 %
 - Diesel: + 6 % (or 2 %, only, under Particle Trap)
 - Hydrogen I.C.E.: + 6 % (D.S.T.C. already accounted as 2002
 - Nat. Gas & H2: + 1 % supplementary for optimal air gas mixture

			DPF	w/o DPF		
	PISI	SIDI	DIESEL	DIESEL	CNGI	H2
2010 improvement	15	10	2	6	16	7

Tank-to-Wheels study Compared Energy Efficiency

	Gas	oline	DPF	w/o DPF			
Cold start N.E.D.C.	PISI	SIDI	DIESEL	DIESEL	CNG	CGH2	LH2
CO2 (g/km)	140	138	131	126	107	0	0
ENERGY EFF. (MJ/100km)	190,0	188,0	179,1	171,8	190,8	168,1	168,1
MASS Consump. (kg/100km)	4,43	4,38	4,17	4,00	4,23	1,40	1,40
Cons. NEDC (I/100km) 2010	5,91	5,84	4,99	4,79	5,93	5,22	5,22
Other G.H.G. (g/km)							
Methane (g/kmCO2 eq.)	0,42	0,42	0,21	0,21	0,84		
N2O (g/km CO2 eq	0,5	0,5	1,55	1,55	0,5	0,5	0,5
·							
GHG global g/km	140,5	138,9	133,0	127,6	108,8	0,5	0,5

concawe

Tank-to-Wheels study Compared G.H.G. emissions

	Gasoline		DPF	w/o DPF			
Cold start N.E.D.C.	PISI	SIDI	DIESEL	DIESEL	CNG	CGH2	LH2
CO ₂ (g/km)	140	138	131	126	107	0	0
ENERGY EFF. (MJ/100km)	190	188	179	172	191	168	168
MASS Consump. (kg/100km)	4.43	4.38	4.17	4.00	4.23	1.40	1.40
Cons. NEDC (I/100km) 2010	5.91	5.84	4.99	4.79	5.93	5.22	5.22
Other G.H.G. (g/km)							
Methane (g/kmCO2 eq.)	0.42	0.42	0.21	0.21	0.84		
N2O (g/km CO2 eq	0.5	0.5	1.55	1.55	0.5	0.5	0.5
GHG global g/km	140.5	138.9	133.0	127.6	108.8	0.5	0.5

concawe

Tank-to-Wheels study

Comments: assessments 2010

> Hydrogen Fuel Cells: Stack: 80 kW Elect. Motor: 75 kW

200 kg 73 kg

Non Hybrid: Fuel: 4.7 kg Pressure Tank: 69 kg

(CryoTank : 57 kg)

> Hybrid: Fuel: 4.2 kg Pressure Tank: 56 kg

Batteries: 20 kg (CryoTank : 51 kg)

"Battery Electric" range: 20 km

> Gasoline vehicles : Cycle test weight class : 1250 kg

Diesel, Nat.Gas, H2 vehicles: Cycle test weight class: 1360 kg

H2 Fuel Cells vehicles: Cycle test weight class: 1470 kg

Tank-to-Wheels study

Prelimina

Comments: assessments 2010

The Fuel Cell system efficiency maps, implemented in code Advisor, are an average distribution. (Sources: G.M. Opel, European program FUERO, Daimler Chrysler)

Tank-to-Wheels study Compared Energy Efficiency

Cold start N.E.D.C.	PISI	DIESEL	CNG	LH2 ICE	CGH2 F.C.	CGH2 Hyb. F.C.
CO2 (g/km)	140	131	107	0	0	0
ENERGY EFF. (MJ/100km)	190	179	191	168 📗	94	84
MASS Consump. (kg/100km)	4,43	4,17	4,23	1,40	0,78	0,70
Cons. NEDC (I/100km) 2010	5,91	4,99	5,93	5,22	2,92	2,60
Other G.H.G. (g/km)				1		
Methane (g/kmCO2 eq.)	0,42	0,21	0,84			
N2O (g/km CO2 eq	0,5	1,55	0,5	0,5		
GHG global g/km	140,5	133,0	108,8	0,5	0,0	0,0

MJ / km on the NEDC (cold)

Tank-to-Wheels study Compared G.H.G. emissions

Cold start N.E.D.C.	PISI	DIESEL	CNG	LH2 ICE	CGH2 F.C.	CGH2 Hyb. F.C.
CO ₂ (g/km)	140	131	107	0	0	0
ENERGY EFF. (MJ/100km)	190,0	179,1	190,8	168,1	94,0	84,0
MASS Consump. (kg/100km)	4,43	4,17	4,23	1,40	0,78	0,70
Cons. NEDC (I/100km) 2010	5,91	4,99	5,93	5,22	2,92	2,60
Other G.H.G. (g/km)						
Methane (g/kmCO2 eq.)	0,42	0,21	0,84			
N2O (g/km CO2 eq	0,5	1,55	0,5	0,5		
	4.40 =	400.0	400.0	0 =	0.0	0.0

140,5

GHG global g/km

concawe

WELL-TO-WHEELS

Well-to-Wheels analysis SELECTED PATHWAYS

The following WTW integration aims at comparing:

2002 / 2010 technologies

Gasoline, Diesel, NG Conventionals and H₂ ICE, Direct & Hybrid FC

Fuelled by

- O Diesel & Gasoline Fossil Fuel
- O CNG 4000 km

for Conventionals

Compressed H2

- O CH₂,NG 4000 km, on-site reforming
- O CH₂ and LH₂, NG 4000 km, central reforming
- O CH₂, LNG, central reforming
- O CH2, farmed wood, gasifier on-site
- O CH2, farmed wood, gasifier central
- O CH₂, EU-mix electricity, electrolysis on-site
- O CH2, EU-mix coal, gasifier central

Liquid H2

- O LH₂, NG 4000 km, central reforming
- O LH2, remote reforming
- O LH₂, LNG, central reforming
- O LH2, farmed wood, gasifier central
- O LH₂, EU-mix electricity, electrolysis central
- O LH2, NG 4000 km, CCGT, electrolysis cen

for ICE, Direct & Hybrid FC

Well-to-Wheels analysis ICE H2 vs conventional pathways

Well-to-Wheels analysis ICE H₂ vs conventional pathways

Well-to-Wheels assessment Fuels / Vehicles assumptions 2010 Remarks for ICE

Global Primary Energy Intensity: for all fossil energy sources, used in ICE:

LH2 > CGH2 > Conventional fuels

Highest energy use -----Lowest energy use

GHG global impact:

- Direct use of NG as CNG better than hydrogen
- Hydrogen ICE more GHG-intensive than conventional engines/fuels
- Electrolysis worst option unless electricity is from renewable source
- Coal could only compete with CO₂ sequestration

Renewable sources obviously give best GHG but...

Are there alternative use for these?

Well-to-Wheels analysis Fuel Cell vs conventional pathways

Well-to-Wheels analysis FC vs conventional pathways

Well-to-Wheels assessment Fuels / Vehicles ICE - F.C. 2010 Remarks

Global Primary Energy Intensity: for all fossil sources:

LH₂/FC ~ conventional ICEs

> CH₂/FC

Highest energy use ------Lowest energy use

GHG global impact:

- H₂ Fuel Cells, even with H2 from NG, compare favourably with conventional fuels ICE's
- Worst option remains Electrolysis from EU-mix power

ICE hybrids still to be calculated

