

Hybrid Technology in Trucks and Buses

Adrian Wickens Product Planning, Volvo Bus Ltd

UK Carbon Emissions from Road Transport

Preview

- Trucks and Buses are Capital Equipment
- For the Manufacturer....
 - Economies of Scale
 - Return on Investment
 - Amenable to the Aftermarket Network ("One Stop Shop")
- For the Operator
 - Return on Investment
 - Reliability and Confidence
 - No Cost Surprises
- Investment Horizon
 - Payback within 2-5 years

Volvo Group: Business Areas

*

Hybrid Potential as we see it today

Volvo Group organisation

OLVO

Heavy Duty Diesel Engines Production*

Volvo Bus Ltd September 2007

Driveline Thinking: Europe vs. North America

Europe

- 6 Main Truck/Bus Producers
- Vertical Integration
- In-house Engines
- In-house gearboxes (some)
- Parts and Service through dealer network
- In-house Hybrids and systems from Suppliers

North America

- Proprietary Components
 - Engine
 - Gearbox
 - Axles
- Unique Components
 - Cabs
 - Chassis
- Parts and Service mixed
- Hybrid Packages from "Suppliers"

Gearbox Thinking

Urban

- Automatic gearboxes for reduced wear (torque converter)
- No clutch to damage
- Lower efficiency
- Special demand for comfort on urban buses

Long Haul

- Manual gearbox for fuel economy
- Move to automated "manual" gearboxes, the AMT
 - Coach
 - Truck
 - Volvo Urban Hybrid

Volvo Hybrids from the past: 1986

- Diesel-Hydraulic Drive
- Hydraulic Accumulators for Energy Recovery
- 30% fuel consumption reduction on trial in London
- Dismantled and converted to regular driveline

Photo Ian Smith, Ian's Bus Stop

Volvo Hybrids from the Past 1996

- Gas Turbine/Electric
- Methanol Fuelled
- Hydraulic Active Suspension
- 4 Wheel Steering
- Central Driver Position
- Now in the Volvo Museum

Hybrid Buses in North America

- Diesel is 38 p/litre on the forecourt
- Standard Urban Buses achieve around 2.8-3.0 mpg (UK > 5 mpg)
- Fuel Savings of 25-30% are being seen
- >1000 Hybrid Buses in Operation
- Air Quality Improvement is a key driver
- US Federal Funding is another encouragement

Commercial Vehicle Auxiliary Systems

- Compressed Air: Brakes, Suspension, Doors (Bus)
- Hydraulics: Power Steering, Cooling Fan Drive (Bus)
- Electrics: Lighting, Control Systems; Bus use includes Saloon Lighting, Destination Indicators, Comms., CCTV, In Coach Entertainment, Air Conditioning
- Mechanical: Air Conditioning Compressor
- Engine driven systems mean low performance at idle or low engine speed
- Saloon heating
 From engine cooling water (when the engine is running!)

Two Fuel Saving Opportunities

Hybrid propulsion

- Electric hybrids
 - provides power & torque assist
 - recover brake energy
 - zero emission / silent mode
 - non idling functionality (at bus stops for example)
 - engine downsizing

Alternative drive of engine and vehicle auxiliaries

Electric auxiliaries

- are easier to control
- are only driven when needed
- are driven at optimal working points independent of engine speed
- have minimum idling losses

The Volvo Group Hybrid – Layout

Hybrid Prototype at NEC Show 2006

 Announcement of UK Hybrid Project

Potential fuel saving

Refuse truck

25 - 35 %

Long haul truck

Wheel loader

Worked Hybrid Examples from the UK

Application	Long Haul Truck	Suburban Truck	Long Haul Coach	Urban Bus
Annual Mileage	120000	50000	132000	38200
Fuel Consumption (mpg)	8	12.5	10.5	5.1
Litres Per Annum	68190	18184	57150	34045
% Hybrid Fuel Saving	6%	25%	6%	30%
Litres Saved	4091	4546	3429	10213
Saving at 80 p per litre (36 p per litre for urban bus)	£3270	£3637	£2743	£3677
VED Saving (RPC Euro 5 only)	£500	£370	£165	£335
Carbon Dioxide Reduction (Tonne	es) 11	12.3	9.3	27.6
Social Benefit (@ \$85/tonne)	£469	£521	£393	£1172

Return on Investment?

Bus Funding in England

- "The Two Billion Pound Subsidy"
 - BSOG £350 M ("Fuel Duty Rebate")
 - **Concessionary Fares**
 - **Bus Support**
 - Total

- £500 M
- £950 M (for non-commercial routes) £1.8 Bn
- Of which London £660 M approx.
- Outside London, Bus operation is deregulated
- Approx. 85% of the network is commercially operated

What Next in the UK?

- Get Hybrid Experience
 - Determine impact on maintenance costs
 - Battery Life/Replacement/Recycling
- Establish the Business Case for the Operator
- Transport for London
 - 800 Hybrid Buses on the road by 2012
 - Hybrids only from 2012 on new tenders
- But outside London...
- Do not push up the price of fuel to make the economic case!
- Be careful with changing BSOG
- Make the Hybrid a sensible investment, not a subsidy drain
 - Some Start-up Support may be necessary

What Next for Volvo?

- 8 Hybrid Test Buses
 - 2 Single Deckers in Sweden
 - 6 Double Deckers in London (2008)
 - Test and Proving
 - Programming and adapting to the Route
- Hybrid Truck Programme in development
- Construction Equipment applications
- Series Production Target is end 2009
- Confirm the Business Case for our Shareholders

Hybrid Buses Cannot Save The World

- 20,000 Double Deckers on the road
- 27 tonnes of Carbon Dioxide per bus per annum saving
- 147,000 Tonnes of Carbon per annum saved
- This is worth £6.2 M to society
- < 0.1% of UK total</p>
- If each bus could carry the users of just 6 more cars*....
 - > 200,000 tonnes of carbon could be saved.....
- How?
 - Congestion charging
 - Road Use Charging

* cars with an average of 168 g/km of carbon dioxide Average rush hour car occupancy is 1.39 in London Current average bus load in London is 15 passengers